Skill: Reduction to Linear Form

Questions

Attempt these questions independently showing full and clear solutions. Check each answer as you go.

1. Reduce each of the following equations in variables x and y into linear form using natural logarithms, stating the variables that must be plotted against each other in order to achieve a straight line. State also the gradient and y -intercept of the resulting straight line.
a. $y=a x^{b}$
b. $y=a b^{x}$
c. $y=a e^{b x}$
d. $y=a \times 2^{b x}$
e. $y=6 \times 7^{x}$
f. $y=a x^{3 b}$
2. At time t mins the temperature $\theta^{\circ} \mathrm{C}$ of a liquid is modelled by the equation

$$
\theta=a b^{-t}
$$

where a and b are unknown constants.
i. Show that $\log _{10} \theta$ when plotted against t will give a straight line, and state the y -intercept and gradient of this line in terms of a and b, respectively.
ii. The straight line obtained in (i) passes through the points $(2,1.05)$ and $(5,-0.03)$. Determine the values of a and b correct to 2 d.p.
iii. Hence use the model to predict:
a. the initial temperature of the liquid
b. the temperature of the liquid after 2.5 minutes
c. the temperature of the liquid in the long term
d. the time at which the liquid will have temperature $40^{\circ} \mathrm{C}$
3. The population P (measured in thousands of people) in year t (measured in number of years after 1970) of the island of Sodor is shown in the table below.

Year	1970	1980	1990	2000	2010
t	0	10	20	30	40
P	15.0	19.1	24.6	31.6	40.3

It is believed that P and t are related by the formula $P=a \times 10^{k t}$ where a and k are constants to be determined.
[Question continues on next page]
a. Show that if we assume the above equation holds true, then a straight line should be obtained when $\log _{10} P$ is plotted against t. State the gradient and y-intercepts of this line in terms of the unknown constants.
b. Complete the table below to the obtain values of $\log _{10} P$ to 3 s.f.

t	0	10	20	30	40
$\log _{10} P$					

c. Use the table from (b) to plot the graph of $\log _{10} P$ against t on the axes below, drawing a line of best fit by eye.

d. Use the relevant features of your graph to estimate the values of the constants a and k to 3 s.f.
e. Hence write an equation for P in terms of t.
f. Use your equation in part (e) to predict:
i. the population of Sodor in 1985.
ii. the year in which the population reaches 35000.
g. Explain why this model might not be realistic in the long term.

