Skill：\quad Reduction to Linear Form

Objective：Rearranging a nonlinear equation into the form $y=m x+c$

Note Space

Worked Example 1

Rearrange the following to the form $Y=m X+c$ where Y and X are functions of the coordinate variables y and x ，respectively，using natural logarithms．State the values of the gradient and the y－intercept in each case．
a．$y=3 x^{2}$
b．$y=a b^{x}$
［You are now ready to work on Q1 in the worksheet］

Objective：Determining unknown constants using experimental data

Worked Example 2

A colony of bats is increasing．The population，P ，is modelled by $P=a \times 10^{b t}$ ，where t is the time in years after 2000.
（i）Show that，according to this model，the graph of $\log _{10} P$ against t should be a straight line of gradient b ．State，in terms of a ，the intercept on the vertical axis．
(ii) The table gives the data for the population from 2001 to 2005 .

Year	2001	2002	2003	2004	2005
t	1	2	3	4	5
P	7900	8800	10000	11300	12800

Complete the table of values on the insert, and plot $\log _{10} P$ against t. Draw a line of best fit for the data.

Year	2001	2002	2003	2004	2005
t	1	2	3	4	5
P	7900	8800	10000	11300	12800
$\log _{10} P$					

(iii) Use your graph to find the equation for P in terms of t.

