Q1, Jan 2006, Q2

(i) Simplify \((3x + 1)^2 - 2(2x - 3)^2\).

(ii) Find the coefficient of \(x^3\) in the expansion of

\[
(2x^3 - 3x^2 + 4x - 3)(x^2 - 2x + 1).
\]

\[
\begin{align*}
(3x + 1)(3x + 1) & - 2(2x - 3)(2x - 3) \\
& = (9x^2 + 3x + 3x + 1) - 2(4x^2 - 6x - 6x + 9) \\
& = 9x^2 + 6x + 1 - 2(4x^2 - 12x + 9) \\
& = 9x^2 + 6x + 1 - 8x^2 + 24x - 18 \\
& = x^2 + 30x - 17
\end{align*}
\]

\[
\begin{align*}
(2x^3 - 3x^2 + 4x - 3)(x^2 - 2x + 1) & \\
& = 4x^3 + 6x^3 + 2x^3 = 12x^3
\end{align*}
\]

\[
\therefore \text{Coefficient} = 12
\]

Q2, Jun 2006, Q4i

By expanding the brackets, show that

\[(x - 4)(x - 3)(x + 1) = x^3 - 6x^2 + 5x + 12.\]

\[
(x - 4)(x - 3)(x + 1) = (x^2 - 7x + 12)(x + 1) \\
= x^3 + x^2 - 7x^2 - 7x + 12x + 12 \\
= x^3 - 6x^2 + 5x + 12
\]

Q3, (Jun 2007, Q1)

Simplify \((2x + 5)^2 - (x - 3)^2\), giving your answer in the form \(ax^2 + bx + c\).

\[
(2x + 5)(2x + 5) - (x - 3)(x - 3) \\
= 4x^2 + 20x + 25 - (x^2 - 6x + 9) \\
= 4x^2 + 20x + 25 - x^2 + 6x - 9 = 3x^2 + 26x + 16
\]
Q4. (Jun 2007, Q5)

The diagram shows a rectangular enclosure, with a wall forming one side. A rope, of length 20 metres, is used to form the remaining three sides. The width of the enclosure is x metres.

(i) Show that the enclosed area, $A\text{ m}^2$, is given by

$$A = 20x - 2x^2.$$ \[2\]

\[
\text{Area} = x(20 - 2x) = 20x - 2x^2
\]

\[
* \text{(Since all three sides sum to 20)}
\]

\[
. \quad .
\]

Q5. (Jun 2008, Q6)

Expand and simplify $(x-5)(x+2)(x+5)$. \[3\]

\[
(x+5)(x-5)(x+2) = (x^2 - 25)(x+2) = x^3 + 2x^2 - 25x - 50
\]

Q6. (Jan 2012, Q3)

Given that

$$5x^2 + px - 8 = q(x - 1)^2 + r$$

for all values of x, find the values of the constants p, q and r. \[4\]

\[
5x^2 + px - 8 = q(x^2 - 2x + 1) + r
\]

\[
\Rightarrow 5x^2 + px - 8 = qx^2 - 2qx + q + r
\]

Comparing coefficients,

\[
q = 5, \quad p = -2(5) = -10
\]

\[
q + r = -8 \Rightarrow r = -13
\]

\[
\therefore p = -10, \quad q = 5, \quad r = -13
\]
Q7, (Jan 2010, Q11, ii)
A lawn is to be made in the shape shown below. The units are metres.

(i) The perimeter of the lawn is \(P \) m. Find \(P \) in terms of \(x \). \([2]\)

(ii) Show that the area, \(A \) \(m^2 \), of the lawn is given by \(A = 9x^2 + 6x \). \([2]\)

\[H_{YP} = \sqrt{(3x)^2 + (4x)^2} = \sqrt{25x^2} = 5x \]

\[\therefore P = (2 + 5x) + 3x + (2 + x) = 3x \]

\[\Rightarrow P = 14x + 4 \]

(i) Using \(A = \frac{1}{2}(a+b)h \) (area of a trapezium)

\[A = \frac{1}{2} \left(2x + 2 + 5x \right) (3x) \]

\[= \frac{1}{2} \left(6 + 6x \right) (3x) = \left(2 + 3x \right) (3x) = 6x + 9x^2 \]

Q8, (Jun 2010, Q4ii)
Expand \((x - 2)^2(x + 1)\), simplifying your answer. \([3]\)

\[(x^2 - 4x + 4)(x + 1) = x^3 + x^2 - 4x^2 + 4x + 4x + 1 \]

\[= x^3 - 3x^2 + 1 \]

Q9, (Jan 2011, Q2)
Given that

\[(x - p)(2x^2 + 9x + 10) = (x^2 - 4)(2x + q) \]

for all values of \(x \), find the constants \(p \) and \(q \). \([3]\)

\[LHS = 2x^3 - 2px^2 + 9x^2 - 9px + 10x - 10p \]

\[= 2x^3 + \left(-2p + 9\right)x^2 + (-9p + 10)x - 10p \]

\[RHS = 2x^3 + qx^2 - 8x - 4q \]
Q10, (Jun 2012, Q1)
Simplify \((x - 5)(x^2 + 3) - (x + 4)(x - 1)\).

\[
x^3 + 3x - 5x^2 - 15 - (x^2 + 3x - 4)
= x^3 - 6x^2 - 11
\]

Q11, (Jan 2013, Q5)

(i) Simplify \((x + 4)(5x - 3) - 3(x - 2)^2\).

(ii) The coefficient of \(x^2\) in the expansion of
\[(x + 3)(x + k)(2x - 5)\]
is \(-3\). Find the value of the constant \(k\).

\[
\sqrt{5x^4 - 3x + 20x^6 - 12 - 3(x^2 - 4x + 4)}
\]
\[
= 5x^2 + 17x - 12 - 3x^2 + 12x - 12
= 2x^2 + 29x - 24
\]

\[
\text{Coeff of } x^2 \text{ is } -5 + 2k + 6 = 1 + 2k
\]
\[
1 + 2k = -3 \Rightarrow 2k = -4 \Rightarrow k = -2
\]
Q12. (Jun 2016, Q1)

(i) Simplify \((2x - 3)^2 - 2(3 - x)^2\).

\[
\begin{align*}
\text{i/ } & \quad (4x^2 - 12x + 9) - 2(9 - 6x + x^2) \\
& = 4x^2 - 12x + 9 - 18 + 12x - 2x^2 \\
& = 2x^2 - 9
\end{align*}
\]

(ii) Find the coefficient of \(x^3\) in the expansion of \((3x^2 - 3x + 4)(5 - 2x - x^3)\).

\[
\begin{align*}
\text{ii/ } & \quad (3x^2 - 3x + 4)(5 - 2x - x^3) \\
& \quad \quad - 6x^3 - 4x^3 = -10x^3
\end{align*}
\]

\[\therefore \text{ Coeff.} = -10\]