Q1, (Jan 2006, Q1i-iii)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i)</td>
<td>$F(t) = 1 - e^{-t/3}$ $(t > 0)$</td>
<td>M1</td>
<td>attempt to solve, here or for 90th percentile. Depends on previous M mark.</td>
</tr>
<tr>
<td></td>
<td>For median m, $\frac{1}{2} = 1 - e^{-m/3}$</td>
<td>M1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\therefore e^{-m/3} = \frac{1}{2} \Rightarrow -\frac{m}{3} = \ln \frac{1}{2} = -0.6931$</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Rightarrow m = 2.079$</td>
<td>A1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>For 90th percentile p, $0.9 = 1 - e^{-p/3}$</td>
<td>M1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\therefore e^{-p/3} = 0.1 \Rightarrow -\frac{p}{3} = \ln 0.1 = -2.3026$</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Rightarrow p = 6.908$</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>(ii)</td>
<td>$f(t) = \frac{d}{dt} F(t) = \frac{1}{3} e^{-t/3}$</td>
<td>M1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A1</td>
<td>(for $t > 0$, but condone absence of this)</td>
</tr>
<tr>
<td></td>
<td>$\mu = \int_{0}^{\infty} \frac{1}{3} t e^{-t/3} dt$</td>
<td>M1</td>
<td>Quoting standard result gets 0/3 for the mean.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M1</td>
<td>attempt to integrate by parts</td>
</tr>
<tr>
<td></td>
<td>$= \frac{1}{3} \left[\left[\frac{t e^{-t/3}}{-1/3} \right]{0}^{\infty} + 3\int{0}^{\infty} e^{-t/3} dt \right]$</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$= [0 - 0] + \left[\frac{e^{-t/3}}{-1/3} \right]_{0}^{\infty} = 3$</td>
<td>A1</td>
<td>5</td>
</tr>
<tr>
<td>(iii)</td>
<td>$P(T > \mu) = \left[\text{from cdf} \right] e^{-\mu/3} = e^{-1}$</td>
<td>M1</td>
<td>[or via pdf]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A1</td>
<td>fit c’s mean (> 0)</td>
</tr>
</tbody>
</table>
\[f(x) = 12x^3 - 24x^2 + 12x, \quad 0 \leq x \leq 1 \]

(i) \[E(X) = \int_0^1 xf(x) \, dx \]

\[= 12 \left[\frac{x^5}{5} - \frac{2x^4}{4} + \frac{x^3}{3} \right]_0^1 \]

\[= 12 \left[\frac{1}{5} - \frac{2}{4} + \frac{1}{3} \right] = 12 \times \frac{1}{30} = \frac{2}{5} \]

For mode, \(f'(x) = 0 \)

\[f'(x) = 12(3x^2 - 4x + 1) = 12(3x - 1)(x - 1) \]

\[\therefore f'(x) = 0 \text{ for } x = 1 \text{ and } x = \frac{1}{3} \]

Any convincing argument (e.g. \(f''(x) \)) that \(x = \frac{1}{3} \) (and not 1) is the mode.

(ii) \[\text{CDF } F(x) = \int_0^x f(t) \, dt \]

\[= 12 \left(\frac{x^4}{4} - \frac{2x^3}{3} + \frac{x^2}{2} \right) \]

\[= 3x^4 - 8x^3 + 6x^2 \]

\[F(\frac{1}{3}) = \frac{3}{256} - \frac{8}{16} + \frac{9}{16} = \frac{3-32-24}{256} = \frac{67}{256} \]

\[F(\frac{1}{2}) = \frac{3}{8} - \frac{8}{4} + \frac{4}{4} = \frac{3-16+24}{16} = \frac{11}{16} \]

\[F(\frac{3}{4}) = \frac{3\times4}{256} - \frac{8}{64} + \frac{4}{16} = \frac{72-64+16}{256} = \frac{8}{256} \]

M1	Definition of cdf, including limits (or use of "+c" and attempt to evaluate it), possibly implied later. Some valid method must be seen.
A1	Or equivalent expression; condone absence of domain [0, 1].
B1	For all three; answers given; must show convincing working (such as common denominator)! Use of decimals is not acceptable.
\[f(x) = k(1 - x) \quad 0 \leq x \leq 1 \]

(i) \[\int_0^1 k(1 - x)\,dx = 1 \]
\[\therefore k\left[x - \frac{1}{2}x^2 \right]_0^1 = 1 \]
\[\therefore k\left[1 - \frac{1}{2} \right] - 0 = 1 \]
\[\therefore k = 2 \]

Labelled sketch: straight line segment from (0,2) to (1,0).

(ii) \[E(X) = \int_0^1 2x(1-x)\,dx \]
\[= \left[x^2 - \frac{4}{3}x^3 \right]_0^1 = \left(1 - \frac{4}{3}\right) - 0 = \frac{1}{3} \]
\[E(X^2) = \int_0^1 2x^2(1-x)\,dx \]
\[= \left[\frac{2}{3}x^3 - \frac{2}{4}x^4 \right]_0^1 = \left(\frac{2}{3} - \frac{1}{2}\right) - 0 = \frac{1}{6} \]
\[\text{Var}(X) = \frac{1}{6} - \left(\frac{1}{3}\right)^2 \]
\[= \frac{1}{18} \]

(iii) \[F(x) = \int_0^x 2(1-t)\,dt \]
\[= \left[2t - t^2 \right]_0^x = \left(2x - x^2 \right) - 0 = 2x - x^2 \]
\[P(X > \mu) = P(X > \frac{2}{3}) = 1 - F\left(\frac{2}{3}\right) \]
\[= 1 - \left(2 \times \frac{1}{3} - \left(\frac{1}{3}\right)^2 \right) = 1 - \frac{2}{3} = \frac{1}{3} \]

(iv) \[F\left(1 - \frac{1}{\sqrt{2}}\right) = 2\left(1 - \frac{1}{\sqrt{2}}\right) - \left(1 - \frac{1}{\sqrt{2}}\right)^2 \]
\[= 2 - \frac{1}{\sqrt{2}} - 1 + \frac{1}{\sqrt{2}} - \frac{1}{2} = \frac{1}{2} \]

Alternatively:
\[2m - m^2 = \frac{1}{2} \]
\[\therefore m^2 - 2m + \frac{1}{2} = 0 \]
\[\therefore m = 1 \pm \frac{1}{\sqrt{2}} \]
\[\text{SO } m = 1 - \frac{1}{\sqrt{2}} \]

<table>
<thead>
<tr>
<th>(i)</th>
<th>M1</th>
<th>Integral of (f(x)), including limits (possibly implied later), equated to 1.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E1</td>
<td>Convincingly shown. Beware printed answer.</td>
</tr>
<tr>
<td></td>
<td>G1</td>
<td>Correct shape.</td>
</tr>
<tr>
<td></td>
<td>G1</td>
<td>Intercepts labelled.</td>
</tr>
<tr>
<td>(ii)</td>
<td>M1</td>
<td>Integral for (E(X)) including limits (which may appear later).</td>
</tr>
<tr>
<td></td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>(iii)</td>
<td>M1</td>
<td>Integral for (E(X^2)) including limits (which may appear later).</td>
</tr>
<tr>
<td></td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>(iv)</td>
<td>M1</td>
<td>Substituting (m = 1 - \frac{1}{\sqrt{2}}) in (c)'s cdf.</td>
</tr>
<tr>
<td></td>
<td>E1</td>
<td>Convincingly shown. Beware printed answer.</td>
</tr>
<tr>
<td></td>
<td>M1</td>
<td>Form a quadratic equation (F(m) = \frac{1}{2}) and attempt to solve it. ft</td>
</tr>
<tr>
<td></td>
<td>E1</td>
<td>(c)'s cdf provided it leads to a quadratic.</td>
</tr>
</tbody>
</table>
\[
f(x) = k(20 - x) \quad 0 \leq x \leq 20
\]

(a) \[\int_0^{20} k(20 - x) \, dx = \left[k \left(20x - \frac{x^2}{2} \right) \right]_0^{20} = k \times 200 = 1 \]
\[
\therefore k = \frac{1}{200}
\]
Straight line graph with negative gradient, in the first quadrant.
Intercept correctly labelled (20, 0), with nothing extending beyond these points.
Sarah is more likely to have only a short time to wait for the bus.

(b) \[\text{cdf} \quad F(x) = \int_0^x f(t) \, dt = \frac{1}{200} \left(20t - \frac{t^2}{2} \right) = \frac{x}{10} - \frac{x^2}{400} \]
\[
P(X > 10) = 1 - F(10) = 1 - \left(1 - \frac{1}{4} \right) = \frac{1}{4}
\]

(iii) Median time, \(m \), is given by \(F(m) = \frac{1}{2} \).
\[
\therefore \frac{m}{10} - \frac{m^2}{400} = \frac{1}{2}
\]
\[
\therefore m^2 - 40m + 200 = 0
\]
\[
\therefore m = 5.86
\]
Q5, (Jun 2009, Q4i-iii)

\[f(x) = \frac{2x}{\lambda^2} \quad \text{for} \quad 0 < x < \lambda, \quad \lambda > 0 \]

(i) \(f(x) > 0 \) for all \(x \) in the domain.

\[
\int_0^\lambda \frac{2x}{\lambda^2} \, dx = \left[\frac{x^2}{\lambda^2} \right]_0^\lambda = \frac{\lambda^2}{\lambda^2} = 1
\]

<table>
<thead>
<tr>
<th>M1</th>
<th>Correct integral with limits.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Shown equal to 1.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(ii)

\[
\mu = \int_0^\lambda \frac{2x^2}{\lambda^2} \, dx = \left[\frac{2x^3}{3\lambda^2} \right]_0^\lambda = \frac{2\lambda^2}{3}
\]

\[
P(X < \mu) = \int_0^{\mu} \frac{2x}{\lambda^2} \, dx = \left[\frac{x^2}{\lambda^2} \right]_0^\mu
\]

\[
= \frac{\mu^2}{\lambda^2} = \frac{4\lambda^2}{9} = \frac{4}{9}
\]

which is independent of \(\lambda \).

<table>
<thead>
<tr>
<th>M1</th>
<th>Correct integral with limits.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>c.a.o.</td>
</tr>
<tr>
<td>M1</td>
<td>Correct integral with limits.</td>
</tr>
<tr>
<td>A1</td>
<td>Answer plus comment. ft c's (\mu) provided the answer does not involve (\lambda).</td>
</tr>
</tbody>
</table>

(iii) Given \(\text{E}(X^2) = \frac{\lambda^2}{2} \)

\[
\sigma^2 = \frac{\lambda^2}{2} - \frac{4\lambda^2}{9} = \frac{\lambda^2}{18}
\]

<table>
<thead>
<tr>
<th>M1</th>
<th>Use of (\text{Var}(X) = \text{E}(X^2) - \text{E}(X)^2).</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>c.a.o.</td>
</tr>
</tbody>
</table>

2
Q6. (Jun 2010, Q4i,ii)

\[f(x) = \lambda e^{-\lambda x} \text{ for } x \geq 0, \text{ where } \lambda > 0. \]

(i)

\[
\int_0^\infty f(x) \, dx = \int_0^\infty \lambda e^{-\lambda x} \, dx
\]

\[
= \left[- e^{-\lambda x}\right]_0^\infty
\]

\[
= (0 - (-e^0)) = 1
\]

M1 Integration of \(f(x) \).

M1 Use of limits or the given result.

A1 Convincingly obtained (Answer given.)

G1 Curve, with negative gradient, in the first quadrant only. Must intersect the y-axis.

G1 \((0, \lambda)\) labelled; asymptotic to x-axis.

(ii)

\[
E(X) = \int_0^\infty \lambda x e^{-\lambda x} \, dx
\]

\[
= \frac{\lambda}{\lambda^2} = \frac{1}{\lambda}
\]

\[
E(X^2) = \int_0^\infty \lambda x^2 e^{-\lambda x} \, dx
\]

\[
= \frac{\lambda^2}{\lambda^3} = \frac{2}{\lambda^2}
\]

\[
\text{Var}(X) = E(X^2) - E(X)^2 = \frac{2}{\lambda^2} - \left(\frac{1}{\lambda}\right)^2 = \frac{1}{\lambda^2}
\]

M1 Correct integral.

A1 c.a.o. (using given result)

M1 Correct integral.

A1 c.a.o. (using given result)

M1 Use of \(E(X^2) - E(X)^2\)

A1
(ii) \[E(X) = \frac{3}{16} \int_{0}^{b} (4x^2 - x^3) \, dx \]

\[= \frac{3}{16} \left[\left(\frac{4x^4}{4} - \frac{x^5}{5} \right) \right]_{0}^{b} \]

\[= \frac{3}{16} \left(\frac{32}{3} - \frac{16}{4} - 0 \right) \]

\[= \frac{4}{5} \]

\[E(X^2) = \frac{3}{16} \int_{0}^{b} (4x^4 - x^5) \, dx \]

\[= \frac{3}{16} \left[x^5 - \frac{x^6}{6} \right]_{0}^{b} \]

\[= \frac{3}{16} \left(16 - \frac{32}{5} - 0 \right) \]

\[= \frac{9}{5} \]

\[\text{Var}(X) = \frac{9}{5} - \left(\frac{5}{4} \right)^2 = \frac{19}{80} \]

\[\text{sd} = \sqrt{\frac{19}{80}} = 0.487 (\text{3}) \]
Q8, (Jun 2011, Q3)

Part (i)

For the UQ $G(u) = 0.75$
\[
\therefore \left(1 + \frac{u}{200}\right)^{-2} = \frac{1}{4} \quad \therefore u = 200
\]
For the LQ $G(l) = 0.25$
\[
\therefore \left(1 + \frac{l}{200}\right)^{-2} = \frac{3}{4} \quad \therefore l = 200 \left(\frac{2}{\sqrt{3}} - 1\right) = 30.94...
\]
\[
\therefore \text{IQR} = 200 - 30.94 = 169.06
\]
For an outlier $x > \text{UQ} + 1.5 \times \text{IQR} = 200 + 1.5 \times 169 = 453.58 \approx 454 \text{ (nearest hour)}$

Part (ii)

For the c.d.f. $F(x)$
\[
\int_{0}^{x} \frac{1}{200} e^{\frac{t}{200}} dt
\]
\[
= \left[-e^{\frac{x}{200}} \right]_{0}^{x} = \left(-e^{\frac{x}{200}} \right) - \left(-e^{0} \right) = 1 - e^{-\frac{x}{200}}
\]

- **M1** Use of $G(x)$ for either quartile.
- **A1** c.a.o.
- **A1** c.a.o.
- **M1** $\text{UQ} - \text{LQ}$
- **M1** $\text{UQ} + 1.5 \times \text{IQR}$
- **E1** Answer given; must be obtained genuinely.

- **M1** Correct integral, including limits (which may be implied subsequently).
- **A1** Correctly integrated.
- **E1** Limits used. Answer given; must be shown convincingly. Condone the omission of $x < 0$ part. Allow use of “+ c” with $F(0) = 0$.

- **M1** Use of $1 - F(x)$
- **E1** Answer given: must be convincing.

- **B1** Accept any form.
- **B1** Accept any form.
- **M1** Conditional probability. Not $P(X > 50) \times P(X > 400)$ unless clearly justified.
- **A1** Accept division of decimals, 3dp or better.

Marks

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>Increasing curve, through $(0, 0)$, in first quadrant only.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Asymptotic behaviour.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asymptote labelled; condone absence of axis labels.</td>
<td></td>
</tr>
<tr>
<td>(B)</td>
<td>Use of $G(x)$ for either quartile.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c.a.o.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>$	ext{UQ} - \text{LQ}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$	ext{UQ} + 1.5 \times \text{IQR}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Answer given; must be obtained genuinely.</td>
<td></td>
</tr>
<tr>
<td>(ii)</td>
<td>Correct integral, including limits (which may be implied subsequently).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Correctly integrated.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limits used. Answer given; must be shown convincingly. Condone the omission of $x < 0$ part. Allow use of “+ c” with $F(0) = 0$.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use of $1 - F(x)$</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Answer given: must be convincing.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$= 0.7788(0)$</td>
<td></td>
</tr>
<tr>
<td>(C)</td>
<td>Accept any form.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Accept any form.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conditional probability. Not $P(X > 50) \times P(X > 400)$ unless clearly justified.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accept division of decimals, 3dp or better.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accept a.w.r.t. 0.778 or 0.779.</td>
<td></td>
</tr>
<tr>
<td>(ii)</td>
<td>Mean = 5/3 [\therefore \lambda = 0.6]</td>
<td>B1 [1]</td>
</tr>
<tr>
<td>(iii)</td>
<td>$F(t) = \int_0^\infty 0.6e^{-0.6t} , dt$</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>$= \left[-e^{-0.6t} \right]_0^\infty$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$= (-e^{-\infty} - (-e^0)) = 1 - e^{-0.6t}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Correct integral with limits (which may be implied subsequently). Allow use of “+ c” accompanied by a valid attempt to evaluate it.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Correctly integrated.</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td>Limits used or c evaluated correctly. Accept unsimplified form. If final answer is given in terms of λ then allow max M1A1A0.</td>
<td>A1</td>
</tr>
<tr>
<td>(iv)</td>
<td>$P(T > 1) = 1 - F(1)$</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>$= 1 - (1 - e^{-0.6}) = 0.5488$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ft c’s $F(t)$.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cao Allow any exact form of the correct answer.</td>
<td>[2]</td>
</tr>
<tr>
<td>(v)</td>
<td>$F(m) = \frac{1}{2}$ [\therefore 1 - e^{-0.6m} = \frac{1}{2}]</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>$\therefore e^{-0.6m} = \frac{1}{2}$ [\therefore -0.6m = -\ln 2] [\therefore m = \frac{\ln 2}{0.6}]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use of definition of median. Allow use of c’s $F(t)$.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Convincing attempt to rearrange to “$m = \ldots$”, to include use of logs.</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>Cao obtained only from the correct $F(t)$. Must be evaluated. Require 2 to 4 sf; condone 5.</td>
<td>A1</td>
</tr>
</tbody>
</table>
Q10, (Jun 2014, Q4i-iii)

(i) Shape

![Diagram](image)

Solution:

$$E \leq a$$ because the distribution is symmetrical about $$x = a$$

(ii) Total area

$$\text{Total area} = \frac{1}{2} 2a \cdot ka$$

Or

$$\int_0^a kx \, dx + \int_a^{2a} k(2a - x) \, dx$$

$$k \left[\frac{x^2}{2} \right]_0^a + k \left[\frac{2ax - x^2}{2} \right]_a^{2a}$$

$$k \left(\frac{a^2}{2} - 0 \right) + k \left(2a^2 - \frac{3a^2}{2} \right)$$

$$= ka^2$$

$$ka^2 = 1$$

$$k = \frac{1}{a^2}$$

Attempt:

- Correctly finding area in terms of $$k, a$$
- Equating area to 1 and convincingly obtaining result.

Answer given:

$$\text{Answer given}$$
Q11, (Jun 2016, Q3i-iv)

(iii) \[\text{Var } X = k \int_0^a x^4 \, dx + k \int_0^a 2ax^2 - x^4 \, dx - a^2 \]

\[k \left[\frac{x^5}{5} \right]_0^a + k \left[\frac{2ax^3}{3} - \frac{x^4}{4} \right]_0^a - a^2 \]

\[\frac{a^2}{4} + \frac{16a^2}{3} - 4a^2 - \frac{2a^2}{3} + \frac{a^2}{4} - a^2 \]

\[\text{Var } X = \frac{a^2}{6} \]

M1 Correct integral for \(E(X^2) \) including limits (which may appear later).

M1 Correctly integrated (dependent on M1 above).

M1 Using \(E(X^2) \).

A1 \(\text{cao} \) [4]

Q11, (Jun 2016, Q3i-iv)

i \[k \int_{-1}^1 (1 - x^2) \, dx = 1 \to k \left[x - \frac{x^3}{3} \right]_{-1}^1 = 1 \]

\[\to \frac{4k}{3} = 1 \]

\[\to k = \frac{3}{4} \]

M1 Correct integral including limits

M1 \(\text{(const)} \times k = 1 \)

A1 \(\text{cao} \) [3]

ii

[Diagram of f(x)]

B1 General shape between -1 and +1

B1 Axes labelled with scales and intercepts (FT their \(k \))

B1 Nothing outside \(|x| < 1\)

[3]

iii \[E(X) = 0 \to V(X) = E(X^2) \]

\[V(X) = \frac{3}{4} - \frac{1}{4} \int_{-1}^1 (x^2 - x^4) \, dx = \frac{3}{4} \left[x^3 - \frac{x^5}{5} \right]_{-1}^1 \]

\[= \frac{1}{5} \]

B1 for \(E(X) = 0 \)

M1 for correct integral including limits

A1 \(\text{cao} \) (ignore mistakes in working) [3]
\[\frac{3}{4} \int_0^q (1 - x^2) \, dx = \frac{1}{4} \]

Integration

\[\frac{3}{4} \left[x - \frac{x^3}{3} \right] \]

\[\rightarrow q - \frac{q^3}{3} = \frac{1}{3} \quad \text{or} \quad q^3 - 3q + 1 = 0 \]

\(g(0.345) = 0.006 \)
\(g(0.355) = -0.02 \)

Change of sign \(0.345 < q < 0.355 \)

So upper quartile = 0.35 to 2 dp

M1 Correct limits and equality
B1 fit their \(k \)
A1 any correct simplified (3-term) cubic

M1 (allow correct alternative)
If solving using calculator: state all three solutions

E1 must be explained clearly
If solving by calculator: explain why only one works