Lines and Planes (Equations, Angles Between and Intersection) (From OCR 4727)

Q1, (Jun 2007, Q2)
A line \(l \) has equation \(\mathbf{r} = 3\mathbf{i} + \mathbf{j} - 2\mathbf{k} + t(\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}) \) and a plane \(\Pi \) has equation \(8x - 7y + 10z = 7 \). Determine whether \(l \) lies in \(\Pi \), is parallel to \(\Pi \) without intersecting it, or intersects \(\Pi \) at one point.

Q2, (Jun 2007, Q6)
Lines \(l_1 \) and \(l_2 \) have equations
\[
\frac{x - 3}{2} = \frac{y - 4}{-1} = \frac{z + 1}{1} \quad \text{and} \quad \frac{x - 5}{4} = \frac{y - 1}{3} = \frac{z - 1}{2}
\]
respectively.

(i) Find the equation of the plane \(\Pi_1 \) which contains \(l_1 \) and is parallel to \(l_2 \), giving your answer in the form \(\mathbf{r} \cdot \mathbf{n} = p \).

(ii) Find the equation of the plane \(\Pi_2 \) which contains \(l_2 \) and is parallel to \(l_1 \), giving your answer in the form \(\mathbf{r} \cdot \mathbf{n} = p \).

(iii) Find the distance between the planes \(\Pi_1 \) and \(\Pi_2 \).

(iv) State the relationship between the answer to part (iii) and the lines \(l_1 \) and \(l_2 \).

Q3, (Jun 2008, Q2)
Find the acute angle between the line with equation \(\mathbf{r} = 2\mathbf{i} + 3\mathbf{k} + t(\mathbf{i} + 4\mathbf{j} - \mathbf{k}) \) and the plane with equation \(\mathbf{r} = 2\mathbf{i} + 3\mathbf{k} + \lambda(\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}) + \mu(\mathbf{i} + 2\mathbf{j} - \mathbf{k}) \).

Q4, (Jun 2008, Q5)
Two lines have equations
\[
\frac{x - k}{2} = \frac{y + 1}{-5} = \frac{z - 1}{-3} \quad \text{and} \quad \frac{x - k}{1} = \frac{y + 4}{-4} = \frac{z}{-2},
\]
where \(k \) is a constant.

(i) Show that, for all values of \(k \), the lines intersect, and find their point of intersection in terms of \(k \).

(ii) For the case \(k = 1 \), find the equation of the plane in which the lines lie, giving your answer in the form \(ax + by + cz = d \).

Q5, (Jun 2009, Q3)
A line \(l \) has equation \(\frac{x - 6}{-4} = \frac{y + 7}{8} = \frac{z + 10}{7} \) and a plane \(p \) has equation \(3x - 4y - 2z = 8 \).

(i) Find the point of intersection of \(l \) and \(p \).

(ii) Find the equation of the plane which contains \(l \) and is perpendicular to \(p \), giving your answer in the form \(ax + by + cz = d \).
Q6, (Jan 2011, Q2)

Two intersecting lines, lying in a plane p, have equations

$$\frac{x-1}{2} = \frac{y-3}{1} = \frac{z-4}{-3} \quad \text{and} \quad \frac{x-1}{2} = \frac{y-3}{2} = \frac{z-4}{4}.$$

(i) Obtain the equation of p in the form $2x - y + z = 3$. [3]

(ii) Plane q has equation $2x - y + z = 21$. Find the distance between p and q. [3]

Q7, (Jun 2011, Q1)

A line l has equation $\frac{x-1}{5} = \frac{y-6}{6} = \frac{z+3}{-7}$ and a plane p has equation $x + 2y - z = 40$.

(i) Find the acute angle between l and p. [4]

(ii) Find the perpendicular distance from the point $(1, 6, -3)$ to p. [2]

Q8, (Jun 2013, Q1)

The plane Π passes through the points with coordinates $(1, 6, 2)$, $(5, 2, 1)$ and $(1, 0, -2)$.

(i) Find a vector equation of Π in the form $\mathbf{r} = a + \lambda \mathbf{b} + \mu \mathbf{c}$. [2]

(ii) Find a cartesian equation of Π. [4]

Q9, (Jun 2013, Q6,ii)

The plane Π has equation $x + 2y - 2z = 5$. The line l has equation $\frac{x-1}{2} = \frac{y+1}{5} = \frac{z-2}{1}$.

(i) Find the coordinates of the point of intersection of l with the plane Π. [3]

(ii) Calculate the acute angle between l and Π. [3]

Q10, (Jun 2015, Q3)

The plane Π passes through the points $(1, 2, 1)$, $(2, 3, 6)$ and $(4, -1, 2)$.

(i) Find a cartesian equation of the plane Π. [5]

The line l has equation $\mathbf{r} = \begin{pmatrix} -1 \\ -2 \\ 6 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ 3 \\ -2 \end{pmatrix}$.

(ii) Find the coordinates of the point of intersection of Π and l. [3]

(iii) Find the acute angle between Π and l. [3]