Matrices – Invariant Points and Lines Exam Questions (From OCR 4755)

Q1, (Jun 2006, Q5)
(i) The matrix \(S = \begin{pmatrix} -1 & 2 \\ -3 & 4 \end{pmatrix} \) represents a transformation.

(A) Show that the point \((1, 1)\) is invariant under this transformation. \([1]\)

(B) Calculate \(S^{-1} \). \([2]\)

(C) Verify that \((1, 1)\) is also invariant under the transformation represented by \(S^{-1} \). \([1]\)

(ii) Part (i) may be generalised as follows.

If \((x, y)\) is an invariant point under a transformation represented by the non-singular matrix \(T \), it is also invariant under the transformation represented by \(T^{-1} \).

Starting with \(T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \), or otherwise, prove this result. \([2]\)

Q2, (Jun 2008, Q3)
Find the equation of the line of invariant points under the transformation given by the matrix
\(M = \begin{pmatrix} -1 & -1 \\ 2 & 2 \end{pmatrix} \). \([3]\)

Q3, (Jan 2004, Q9)
You are given the matrix \(M = \begin{pmatrix} 0.8 & 0.6 \\ 0.6 & -0.8 \end{pmatrix} \).

(i) Calculate \(M^2 \). \([1]\)

You are now given that the matrix \(M \) represents a reflection in a line through the origin.

(ii) Explain how your answer to part (i) relates to this information. \([1]\)

(iii) By investigating the invariant points of the reflection, find the equation of the mirror line. \([3]\)

(iv) Describe fully the transformation represented by the matrix \(P = \begin{pmatrix} 0.8 & -0.6 \\ 0.6 & 0.8 \end{pmatrix} \). \([2]\)

(v) A composite transformation is formed by the transformation represented by \(P \) followed by the transformation represented by \(M \). Find the single matrix that represents this composite transformation. \([2]\)

(vi) The composite transformation described in part (v) is equivalent to a single reflection. What is the equation of the mirror line of this reflection? \([1]\)
Q4, (Jun 2005, Q3)

Find the equation of the line of invariant points under the transformation given by the matrix

\[M = \begin{pmatrix} 3 & -1 \\ 2 & 0 \end{pmatrix}. \]

Q5, (OCR 2604, Jun 2001, Q4b)

The matrix \(\begin{pmatrix} 4 & 2 \\ 6 & k \end{pmatrix} \), where \(k \) is a constant, defines a transformation in the \((x, y)\)-plane.

(i) Find the set of invariant points of the transformation

(A) when \(k = 4 \),

(B) when \(k = 5 \).

(ii) When \(k = 5 \), verify that \(y = 2x - 3 \) is an invariant line of the transformation.

Q6 (OCR 2604, Jun 2002, Q4b)

\[M \] is the transformation of the plane defined by the matrix \(\begin{pmatrix} -1 & 2 \\ 3 & 4 \end{pmatrix} \).

(i) Show that \(y = 3x \) is an invariant line of the transformation \(M \), and find the equation of the other invariant line.

\[P \] is the transformation defined by the matrix \(\begin{pmatrix} 5 & -1 \\ -8 & 2 \end{pmatrix} \).

The line \(L \) is the image of the line \(y = 3x \) under the transformation \(P \).

(ii) Find the equation of \(L \).

The transformation \(Q \) is the inverse of \(P \).

(iii) State the image of the line \(L \) under the transformation \(Q \).

(iv) Find the matrix corresponding to \(Q \).

The transformation \(R \) is \(Q \) followed by \(M \) followed by \(P \).

(v) Show that \(L \) is an invariant line of the transformation \(R \).

(vi) Find the matrix corresponding to \(R \).