STEP II - Reduction Formulae

Further calculus

Integrate using reduction formulae.

Q1, (STEP III, 2009, Q8)

Let m be a positive integer and let n be a non-negative integer.

(i) Use the result $\lim_{t\to\infty} e^{-mt}t^n = 0$ to show that

$$\lim_{x \to 0} x^m (\ln x)^n = 0.$$

By writing x^x as $e^{x \ln x}$ show that

$$\lim_{x \to 0} x^x = 1.$$

(ii) Let $I_n = \int_0^1 x^m (\ln x)^n dx$. Show that

$$I_{n+1} = -\frac{n+1}{m+1}I_n$$

and hence evaluate I_n .

(iii) Show that

$$\int_0^1 x^x dx = 1 - \left(\frac{1}{2}\right)^2 + \left(\frac{1}{3}\right)^3 - \left(\frac{1}{4}\right)^4 + \cdots$$

Q2, (STEP III, 2013, Q1)

Given that $t = \tan \frac{1}{2}x$, show that $\frac{\mathrm{d}t}{\mathrm{d}x} = \frac{1}{2}(1+t^2)$ and $\sin x = \frac{2t}{1+t^2}$.

Hence show that

$$\int_{0}^{\frac{1}{2}\pi} \frac{1}{1 + a \sin x} dx = \frac{2}{\sqrt{1 - a^2}} \arctan \frac{\sqrt{1 - a}}{\sqrt{1 + a}} \qquad (0 < a < 1).$$

Let

$$I_n = \int_0^{\frac{1}{2}\pi} \frac{\sin^n x}{2 + \sin x} \, \mathrm{d}x \qquad (n \geqslant 0).$$

By considering $I_{n+1} + 2I_n$, or otherwise, evaluate I_3 .

Q3, (STEP III, 2015, Q1)

(i) Let

$$I_n = \int_0^\infty \frac{1}{(1+u^2)^n} \, \mathrm{d}u \,,$$

where n is a positive integer. Show that

$$I_n - I_{n+1} = \frac{1}{2n}I_n$$

and deduce that

$$I_{n+1} = \frac{(2n)! \, \pi}{2^{2n+1} (n!)^2} \,.$$

(ii) Let

$$J = \int_0^\infty f((x - x^{-1})^2) dx$$
,

where f is any function for which the integral exists. Show that

$$J = \int_0^\infty x^{-2} \mathrm{f} \left((x - x^{-1})^2 \right) \mathrm{d}x \, = \frac{1}{2} \int_0^\infty (1 + x^{-2}) \mathrm{f} \left((x - x^{-1})^2 \right) \mathrm{d}x \, = \int_0^\infty \mathrm{f} \left(u^2 \right) \mathrm{d}u \, .$$

(iii) Hence evaluate

$$\int_{0}^{\infty} \frac{x^{2n-2}}{(x^4 - x^2 + 1)^n} dx,$$

where n is a positive integer.

Q4, (STEP III, 2016, Q1)

Let

$$I_n = \int_{-\infty}^{\infty} \frac{1}{(x^2 + 2ax + b)^n} \,\mathrm{d}x\,,$$

where a and b are constants with $b > a^2$, and n is a positive integer.

(i) By using the substitution $x + a = \sqrt{b - a^2} \tan u$, or otherwise, show that

$$I_1 = \frac{\pi}{\sqrt{b-a^2}}.$$

- (ii) Show that $2n(b-a^2)I_{n+1} = (2n-1)I_n$.
- (iii) Hence prove by induction that

$$I_n = \frac{\pi}{2^{2n-2}(b-a^2)^{n-\frac{1}{2}}} \binom{2n-2}{n-1}.$$

Q5, (STEP III, 2004, Q7)

For n = 1, 2, 3, ..., let

$$I_n = \int_0^1 \frac{t^{n-1}}{(t+1)^n} \, \mathrm{d}t \, .$$

By considering the greatest value taken by $\frac{t}{t+1}$ for $0 \le t \le 1$ show that $I_{n+1} < \frac{1}{2}I_n$.

Show also that $I_{n+1} = -\frac{1}{n 2^n} + I_n$.

Deduce that $I_n < \frac{1}{n 2^{n-1}}$.

Prove that

$$\ln 2 = \sum_{r=1}^{n} \frac{1}{r \, 2^r} + I_{n+1}$$

and hence show that $\frac{2}{3} < \ln 2 < \frac{17}{24}$.