Mode

The mode of a CHV is the maximum of its probability density function (if a maximum exists).

The continuous random variable X has probability density function given by

$$f(x) = \begin{cases} \frac{3}{80} (8 + 2x - x^2) & 0 \leq x \leq 4 \\ 0 & \text{otherwise} \end{cases}$$

a. Sketch the probability density function of X.

b. Find the mode of X.

$$a, \quad f(x) = -\frac{3}{80} (x^2 - 2x - 8) = \frac{3}{80} (x - 4)(x + 2)$$

roots at $x = 4$ or $x = -2$

$$F(0) = -\frac{3}{80} (8) = \frac{3}{10} \quad \text{LHS in } (0, \frac{3}{10})$$

$$F(4) = -\frac{3}{80} (4^2 - 2(4) - 8) = 0 \quad \text{RHS in } (4, 0)$$

b. The mode may or may not be a local maximum as found by differentiating.

in this P.D.F differentiating and finding the stationary point would lead us to a mode outside of the domain of validity of the P.D.F.

Here, from observing where the function is valid, we see the mode is $F(0)$.

[In this question, the mode is found by differentiation]
\[f(x) = \begin{cases} \frac{3}{80}(8 + 2x - x^2) & 0 \leq x \leq 4 \\ 0 & \text{otherwise} \end{cases} \]

\[f'(x) = \frac{3}{80}(2 - 2x) = 0 \quad (\text{i.e., mode on this function is the root point}) \]

\[\Rightarrow 2 - 2x = 0 \quad \Rightarrow x = 1 \]

Mode is x-value paired with highest "frequency".

Median

The median is the value of \(x \) to the left of which 0.5 of the probability lies and to the right of which 0.5 of the probability lies.

Method 1: Using P.D.F.

Solve \(\int_x^\infty f(x) \, dx = 0.5 \) or \(\int_{-\infty}^x f(x) \, dx = 0.5 \)

Method 2: Use C.D.F.

Solve \(F(x) = 0.5 \)
The continuous random variable \(X \) has cumulative distribution function given by

\[
F(x) = \begin{cases}
0 & \quad x < 0 \\
\frac{x^2}{6} & \quad 0 \leq x < 2 \\
\frac{-x^2}{3} + 2x - 2 & \quad 2 \leq x \leq 3 \\
1 & \quad x > 3
\end{cases}
\]

Find the following, giving your answers to 3 decimal places:

a) the median value of \(X \)

b) the quartiles and the interquartile range of \(X \).

\(a \) \(F(x) = 0.5 \implies \frac{x^2}{6} = 0.5 \implies x^2 = 3 \implies x = \sqrt{3} \)

\((-\sqrt{3} \text{ not valid since } -\sqrt{3} < 0) \implies x = \sqrt{3} \) (within \(0 \leq x < 2 \) \implies valid)

\(b \) \(F(x) = 0.75 \) (Upper quartile)

\[
\implies \frac{x^2}{6} = 0.75 \implies x^2 = 4.5 \implies x = \pm \frac{3\sqrt{2}}{2}
\]

\(0 \neq \pm \frac{3\sqrt{2}}{2} \neq 2 \) \implies disregard.

\(F(x) = 0.75 \implies -\frac{x^2}{3} + 2x - 2 = 0.75 \)

\[
\implies -\frac{x^2}{3} + 2x - 2.75 = 0 \implies x = \frac{6 \pm \sqrt{5}}{2}, \quad \frac{6 - \sqrt{5}}{2}
\]

\(\therefore \text{UQ} = \frac{6 - \sqrt{5}}{2} \approx 2.136 \)

\(\text{LQ} : F(x) = 0.25 \implies \frac{x^2}{6} = 0.25 \implies x^2 = \frac{3}{2} \implies x = \frac{\sqrt{6}}{2} \) or \(-\frac{\sqrt{6}}{2} \)

\(\implies \text{LQ} = \frac{\sqrt{6}}{2} \approx 1.225 \)

\[\text{IQR} = \frac{6 - \sqrt{5}}{2} - \frac{\sqrt{6}}{2} \approx 0.909 \]
Skewness of Probability Density Function

Positive skew refers to a function that looks to have been stretched in the positive direction.

Positive skew \Rightarrow Mode < Median or Mean

Negative skew refers to a function that looks to have been stretched in the negative direction.

Negative skew \Rightarrow Mode > Median or Mean