The differential of a function is only easy when the variables used are \(y \) and \(x \), with \(y \) as the subject.

\[\text{e.g. } y = x^3 + 3x^2 - 2 \implies \frac{dy}{dx} = 3x^2 - 6x \]

If different variables are used, say \(A \) in terms of \(p \), the differential would be written as \(\frac{dA}{dp} \).

\[\text{e.g. } T = 7s^2 - 3 \implies \frac{dT}{ds} \]

\[N = 5n^2 + 2n + 2 \implies \frac{dN}{dn} \]

Often in practical situations, the letters are not x and y.

The surface area, \(A \) cm\(^2\), of an expanding sphere of radius \(r \) cm is given by \(A = 4\pi r^2 \). Find the rate of change of the area with respect to the radius at the instant when the radius is 6 cm.

\[A = 4\pi r^2 \]

\[\frac{dA}{dr} = 8\pi r \implies \text{at } r = 6, \frac{dA}{dr} = 8\pi (6) = 48\pi \]

A sector of a circle has area 100 cm\(^2\).

a. Show that the perimeter of this sector is given by the formula

\[P = 2r + \frac{200}{r}, \quad r > \sqrt{\frac{100}{\pi}} \]

b. Find the minimum value for the perimeter.

\[\frac{1}{\pi r^2} \times \frac{0}{360} = 100 \]

\[\text{Write out info given in question. This will be used to eliminate a variable.} \]

\[P = 2r + \ell \]

\[\text{Write the formula for required quantities.} \]

\[\ell = \frac{2\pi r \times 0}{360} \]

\[\implies P = 2r + \frac{2\pi r}{360} \]

\[\text{Use eqn to eliminate the \textit{unknown variable}} \]

\[\text{Since } \frac{\pi r \times 0}{360} = 100 \implies \theta = \frac{100 \times 360}{\pi r^2} = \frac{36000}{\pi r^2} \]
\[P = 2r + 2\pi r \times \frac{36000}{11r^2} \times \frac{1}{360} \]
\[\Rightarrow P = 2r + 2\pi r \times \frac{100}{11r^2} = 2r + \frac{200}{r} \text{ as required} \]

\[\frac{dp}{dr} = 2 - \frac{200}{r^2} = 0 \]
\[\Rightarrow 2 - \frac{200}{r^2} = 0 \Rightarrow 2 = \frac{200}{r^2} \Rightarrow r^2 = 100 \]
\[\Rightarrow r = \pm 10 \]

\[r = 10 \]

\[P = 2(10) + 200(10)^{-1} = 40 \text{ cm} \]

\[\text{Q4, (Edexcel 6664, Jan 2012, Q8)} \]

Figure 3 shows a flowerbed. Its shape is a quarter of a circle of radius \(x \) metres with two equal rectangles attached to it along its radii. Each rectangle has length equal to \(x \) metres and width equal to \(y \) metres.

Given that the area of the flowerbed is 4 m\(^2\),

(a) show that

\[y = \frac{16 - \pi x^2}{8x} \] \hspace{1cm} (3)

(b) Hence show that the perimeter \(P \) metres of the flowerbed is given by the equation

\[P = \frac{8}{x} + 2x \] \hspace{1cm} \text{No } y \text{'s}. \text{ use (1) to eliminate } y \text{'s. } \hspace{1cm} (3)

(c) Use calculus to find the minimum value of \(P \). \hspace{1cm} (5)

(d) Find the width of each rectangle when the perimeter is a minimum. Give your answer to the nearest centimetre. \hspace{1cm} (2)
\[A = \frac{1}{4} \pi r^2 + 2xy = 4 \]
\[\pi r^2 + 8xy = 16 \]
\[8xy = 16 - \pi r^2 \]
\[y = \frac{16 - \pi r^2}{8x} \]

b/ \[P = \frac{1}{2} \pi r + 2x + 4y \]
\[= \frac{1}{2} \pi r + 2x + 4 \left(\frac{16 - \pi r^2}{2} \right) \]
\[= \frac{1}{2} \pi r + 2x + \frac{16}{2} - \frac{\pi r^2}{2} \]
\[= \frac{1}{2} \pi r + 2x + \frac{8}{x} - \frac{\pi r^2}{2} = 2x + \frac{8}{x} \]
\[\therefore P = \frac{8}{x} + 2x \]

c/ \[P = 8x^{-1} + 2x \]
\[\Rightarrow \frac{dP}{dx} = -8x^{-2} + 2 = 0 \]
\[\Rightarrow -8 + 2 = 0 \]
\[\Rightarrow -8 = -2 \Rightarrow 8 = 2x^2 \]
\[\Rightarrow x^2 = 4 \]
\[\Rightarrow x = \pm 2 \]
\[\Rightarrow x = 2 \]
\[P = 8(2)^{-1} + 2(2) = 8 \]

d/ \[y = \frac{16 - \pi (2)^2}{8(2)} = 0.2146 \text{ m} \approx 2.1 \text{ cm} \]