Geometric Distribution

This describes a game with two outcomes, ‘win’ or ‘lose’. The game is played up to and including the first ‘win’, e.g. as in a driving test.

If the probability of a win is \(p \), and \(X \) is the number of trials up to and including the first ‘win’, we say \(X \sim \text{Geo}(p) \).

e.g. Two in three driving tests are failures. Find the probability that a person passes on their

a/ 2nd attempt \(X \sim \text{Geo}(\frac{1}{3}) \) \(P(X=2) = \frac{2}{3} \times \frac{1}{3} = \frac{2}{9} \)

b/ 4th attempt \(P(X=4) = (\frac{2}{3})^3 \times (\frac{1}{3}) = \frac{8}{81} \)

c/ 8th attempt \(P(X=8) = (\frac{2}{3})^7 \times (\frac{1}{3}) = \frac{128}{6561} \)

Summary

For a game with two outcomes, win or lose, the probability of the first win occurring on turn \(n \), ‘\(n \)’ is,

\[P(X \geq n) = (1-p)^{n-1} \cdot p \quad \text{where} \quad X \sim \text{Geo}(p) \]

e.g. For \(X \sim \text{Geo}(0.7) \)

a/ \(P(X=8) = 0.3^7 \times 0.7 = 1.53 \times 10^{-4} \)

b/ \(P(X > 5) = 0.3^5 = 2.43 \times 10^{-3} \)

The ‘bet’ can be said to be won as soon as the 5th loss has occurred. In the geometric distribution ‘\(> \)’ probabilities are the easiest to work out.

c/ \(P(X > 3) = P(X > 2) = 0.3^2 = 0.09 \)
\(P(X \leq 10) = 1 - P(X > 10) \)
\(= 1 - 0.3^{10} = 0.9999940851 \)
\(\approx 1.00 \) (3sf)

Do want 10, 9, 8, ...
Don't want 11, 12, 13, ...

\(P(5 \leq X \leq 7) \)
Do want 5, 6

\(P(X > 4) - P(X > 6) = 0.3^4 - 0.3^6 = 7.37 \times 10^{-3} \)

<table>
<thead>
<tr>
<th>Distribution</th>
<th>(P(X = x))</th>
<th>(E(X))</th>
<th>(\text{Var}(X))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial (B(n, p))</td>
<td>(\binom{n}{x} p^x (1-p)^{n-x})</td>
<td>np</td>
<td>np(1-p)</td>
</tr>
<tr>
<td>Uniform distribution over 1, 2, ..., (n) (U(n))</td>
<td>(\frac{1}{n})</td>
<td>(\frac{n+1}{2})</td>
<td>(\frac{1}{12}(n^2 - 1))</td>
</tr>
<tr>
<td>Geometric distribution (\text{Geo}(p))</td>
<td>((1-p)^{x-1} p)</td>
<td>(\frac{1}{p})</td>
<td>(\frac{1-p}{p^2})</td>
</tr>
<tr>
<td>Poisson (\text{Po}(\lambda))</td>
<td>(e^{-\lambda} \frac{\lambda^x}{x!})</td>
<td>(\lambda)</td>
<td>(\lambda)</td>
</tr>
</tbody>
</table>

\[E(X) = \frac{1}{p} \]
\[\text{Var} = \frac{1-p}{p^2} \]

Assumptions for a Geometric Distribution to be Valid

There must be modified to fit the context of the situation:

- Trials are independent
- Fixed probability of success
\(i/ \quad X \sim \text{geo}(\frac{2}{5}) \)

\(a/ \quad P(X = 5) = \left(\frac{3}{5}\right)^4 \left(\frac{2}{5}\right) = \frac{162}{3125} \)

\(b/ \quad P(X < 5) = 1 - P(X > 4) \)

\[= 1 - \left(\frac{3}{5}\right)^4 = \frac{544}{625} \quad \text{Do want 4, 3, 2, ...} \]

\[\text{Don’t want 5, 6, 7, 8, ...} \]

\(ii/a/ \quad X \sim \text{B}(5, \frac{2}{5}) \), \quad P(X = 1) = 0.2592 \)

\(b/ \quad \text{1 goal in 5 shots} \)

\[0.2592 \times \frac{2}{5} = \frac{324}{3125} \]

\(i/\quad X \sim \text{geo}\left(\frac{1}{8}\right) \quad P(X = 3) = \left(\frac{7}{8}\right)^3 \left(\frac{1}{8}\right) = \frac{49}{512} \)

\(b/ \quad P(X > 3) = \left(\frac{7}{8}\right)^3 = \frac{343}{512} \)

\(ii/ \quad E(X) = \frac{1}{\left(\frac{1}{8}\right)} = 8 \)

\(iii/ \quad X \sim \text{B}(15, \frac{1}{8}) \quad P(X = 2) = 0.289 \)
The random variable X has the distribution $\text{Geo}(0.2)$. Find

(i) $P(X = 3)$.
(ii) $P(3 \leq X \leq 5)$,
(iii) $P(X > 4)$.

Two independent values of X are found.

(iv) Find the probability that the total of these two values is 3.

\[
P(X = 3) = 0.8^2 \times 0.2 = \frac{16}{125}
\]
\[
P(X > 2) - P(X > 5) = 0.8^2 - 0.8^5 \quad \text{Want 3, 4, 5}
\]
\[
= \frac{64}{125}
\]
\[
P(X > 4) = 0.8^4 = \frac{256}{625}
\]

\[
X_1 \quad X_2 \quad P(X_1) \quad P(X_2)
\]
\[
1 \quad 2 \quad 0.2 \quad 0.2 \times 0.8 = 0.032
\]
\[
2 \quad 1 \quad 0.2 \times 0.8 \quad 0.2
\]
\[
= 0.064
\]

Q13, (Jun 2016, Q7)
On average Marie scores a goal on 20% of her shots. The variable random X is the number of shots Marie takes, up to and including her first goal.

(i) State two conditions needed for X to have a geometric distribution.

(ii) Assuming these conditions are satisfied, find the probability that

(a) $X = 3$,

(b) $X < 10$,

(c) $9 < X < 20$.

\[
P(X = 3) = 0.8^2 \times 0.2 = \frac{16}{125}
\]
\[
1 - P(X > 9) = 1 - 0.8^9 = 0.866
\]
\[
P(X > 9) - P(X > 19) = 0.8^9 - 0.8^{19} = 0.120.
\]