Practical Applications of Differentiation

i	$h = 120/x^2$ $A = 2x^2 + 4xh$ o.e.	B1		
	$A = 2x^2 + 4xh$ o.e.	M1		
	completion to given answer	A1	at least one interim step shown	3
ii	$A' = 4x - 480/x^2$ o.e. $A'' = 4 + 960 / x^3$	2	1 for kx ⁻² o.e. included	
	$A^{\prime\prime} = 4 + 960 / x^3$	2	ft their A' only if kx ⁻² seen; 1 if one error	4
iii	use of $A' = 0$	M1		
	$x = \sqrt[3]{120}$ or 4.9(3)	A1		
	Test using A' or A" to confirm			
	minimum	T1		5
	Substitution of their x in A	M1	Dependent on previous M1	٦
	A = 145.9 to 146	A1		

Q2, (Edexcel 6664, Jun 2015, Q9)

(a)	Either: (Cost of polishing top and bottom (two circles) is $3 \times 2\pi r^2$ or (Cost of polishing curved surface area is) $2 \times 2\pi rh$ or both - just need to see at least one of these products	B1
	Uses volume to give $(h =) \frac{75\pi}{\pi r^2}$ or $(h =) \frac{75}{r^2}$ (simplified) (if V is misread – see below)	B1ft
	$(C) = 6\pi r^2 + 4\pi r \left(\frac{75}{r^2}\right)$ Substitutes expression for h into area or cost expression of form $Ar^2 + Brh$	M1
	$C = 6\pi r^{2} + \frac{300\pi}{r}$ $\left\{\frac{dC}{dr} = \right\} 12\pi r - \frac{300\pi}{r^{2}} \text{or} 12\pi r - 300\pi r^{-2} \text{ (then isw)}$	A1* (4)
(b)	$\left\{ \frac{\mathrm{d}C}{\mathrm{d}r} = \right\} 12\pi r - \frac{300\pi}{r^2} \text{or} 12\pi r - 300\pi r^{-2} \text{ (then isw)}$	M1 A1 ft
	$12\pi r - \frac{300\pi}{r^2} = 0$ so $r^k = \text{value where } k = \pm 2, \pm 3, \pm 4$	dM1
	Use cube root to obtain $r = \left(their \frac{300}{12}\right)^{\frac{1}{3}} (= 2.92)$ - allow $r = 3$, and thus $C =$	ddM1
	Then $C = \text{awrt } 483 \text{ or } 484$	Alcao (5)
(c)	$\left\{ \frac{\mathrm{d}^2 C}{\mathrm{d}r^2} = \right\} 12\pi + \frac{600\pi}{r^3} > 0 \text{ so minimum}$	B1ft (1) [10]

Q3, (Edexcel 6664, Jan 2011, Q10)

(a)	$V = 4x(5-x)^2 = 4x(25-10x+x^2)$	
	$V = 4x(5 - x)^{2} = 4x(25 - 10x + x^{2})$ So, $V = 100x - 40x^{2} + 4x^{3}$ $\pm \alpha x \pm \beta x^{2} \pm \gamma x^{3}, \text{ where } \alpha, \beta, \gamma \neq 0$	M1
	$V = 100x - 40x^2 + 4x^3$	A1
	$\frac{dV}{dx} = 100 - 80x + 12x^2$ At least two of their expanded terms differentiated correctly.	M1
	$100 - 80x + 12x^2$	A1 cao (4)
(b)	$100 - 80x + 12x^2 = 0$ Sets their $\frac{dV}{dx}$ from part (a) = 0	M1
(-)	$\frac{1}{dx} = \frac{1}{dx} = \frac{1}{dx}$	
	$\{ \Rightarrow 4(3x^2 - 20x + 25) = 0 \Rightarrow 4(3x - 5)(x - 5) = 0 \}$	
	$\{ \Rightarrow 4(3x^2 - 20x + 25) = 0 \Rightarrow 4(3x - 5)(x - 5) = 0 \}$ $\{ \text{As } 0 < x < 5 \} \ x = \frac{5}{3} \text{ or } x = \text{awrt } 1.67$	A1
	$x = \frac{5}{3}$, $V = 4\left(\frac{5}{3}\right)\left(5 - \frac{5}{3}\right)^2$ Substitute candidate's value of x where $0 < x < 5$ into a formula for V .	dM1
	So, $V = \frac{2000}{27} = 74\frac{2}{27} = 74.074$ Either $\frac{2000}{27}$ or $74\frac{2}{27}$ or awrt 74.1	A1
		(4)
(c)	$\frac{d^2V}{dx^2} = -80 + 24x$ Differentiates their $\frac{dV}{dx}$ correctly to give $\frac{d^2V}{dx^2}$.	M1
	When $x = \frac{5}{3}$, $\frac{d^2V}{dx^2} = -80 + 24\left(\frac{5}{3}\right)$	
	$\frac{d^2V}{dx^2} = -40 < 0 \Rightarrow V \text{ is a maximum} \qquad \frac{d^2V}{dx^2} = -40 \text{ and } \leq 0 \text{ or negative and } \underline{\text{maximum}}.$	A1 cso
		(2) [10]

Q4, (Edexcel 6664, Jan 2012, Q8)

(a)
$$kr^2 + cxy = 4$$
 or $kr^2 + c[(x+y)^2 - x^2 - y^2] = 4$ M1
 $\frac{1}{4}\pi x^2 + 2xy = 4$ A1
 $y = \frac{4 - \frac{1}{4}\pi x^2}{2x} = \frac{16 - \pi x^2}{8x}$ B1 cso

(b)
$$P = 2x + cy + k \pi r$$
 where $c = 2$ or 4 and $k = \frac{1}{4}$ or $\frac{1}{2}$ M1

B1 cso

$$P = \frac{\pi x}{2} + 2x + 4\left(\frac{4 - \frac{1}{4}\pi x^2}{2x}\right) \text{ or } P = \frac{\pi x}{2} + 2x + 4\left(\frac{16 - \pi x^2}{8x}\right) \text{ o.e.}$$
 A1

$$P = \frac{\pi x}{2} + 2x + \frac{8}{x} - \frac{\pi x}{2} \quad \text{so} \quad P = \frac{8}{x} + 2x$$

$$y = \frac{4 - \frac{1}{4}\pi x}{2x} = \frac{16 - \pi x^2}{8x}$$

$$P = 2x + cy + k \pi r \text{ where } c = 2 \text{ or } 4 \text{ and } k = \frac{1}{4} \text{ or } \frac{1}{2}$$

$$P = \frac{\pi x}{2} + 2x + 4\left(\frac{4 - \frac{1}{4}\pi x^2}{2x}\right) \text{ or } P = \frac{\pi x}{2} + 2x + 4\left(\frac{16 - \pi x^2}{8x}\right) \text{ o.e.}$$

$$P = \frac{\pi x}{2} + 2x + \frac{8}{x} - \frac{\pi x}{2} \text{ so } P = \frac{8}{x} + 2x$$

$$A1 \qquad (3)$$

$$A2 \qquad (4) \qquad (5) \qquad (5) \qquad (5) \qquad (6) \qquad (6) \qquad (6) \qquad (6) \qquad (6) \qquad (7) \qquad (8) \qquad (8)$$

and so
$$x = 2$$
 o.e. (ignore extra answer $x = -2$)

$$P = 4 + 4 = 8$$
 (m) B1 (5)

(d)
$$y = \frac{4-\pi}{4}$$
, (and so width) = 21 (cm) M1, A1

Q5, (Edexcel 6664, Jun 2012, Q8)

45) (200)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
(a)	$(h =) \frac{60}{\pi x^2}$ or equivalent exact (not decimal) expression e.g. $(h =) 60 \div \pi x^2$	B1	(1)
(b)	$(A =)2\pi x^2 + 2\pi xh$ or $(A =)2\pi r^2 + 2\pi rh$ or $(A =)2\pi r^2 + \pi dh$ may not be simplified and may appear on separate lines	B1	
	Either $(A) = 2\pi x^2 + 2\pi x \left(\frac{60}{\pi x^2}\right)$ or As $\pi x h = \frac{60}{x}$ then $(A =)2\pi x^2 + 2\left(\frac{60}{x}\right)$	M1	
	$A = 2\pi x^2 + \left(\frac{120}{x}\right)$	A1 cso	(3)
(c)	$\left(\frac{dA}{dx}\right) = 4\pi x - \frac{120}{x^2}$ or $= 4\pi x - 120x^{-2}$	M1 A1	
	$4\pi x - \frac{120}{x^2} = 0$ implies $x^3 =$ (Use of > 0 or < 0 is M0 then M0A0)	M1	
	$x = \sqrt[3]{\frac{120}{4\pi}} \text{ or answers which round to 2.12} \qquad (-2.12 \text{ is A0})$	dM1 A1	(5)
(d)	$A = 2\pi (2.12)^2 + \frac{120}{2.12}$, = 85 (only ft x = 2 or 2.1 – both give 85)	M1, A1	(2)
(e)	Either $\frac{d^2A}{dx^2} = 4\pi + \frac{240}{x^3}$ and sign Or (method 2) considers gradient to left and right of their 2.12 (e.g at 2 and 2.5)	M1	
	considered (May appear in (c)) Or (method 3) considers value of A either side		
	Finds numerical values for gradients and observes		
	which is > 0 and therefore minimum gradients go from negative to zero to positive so	A1	
	(most substitute 2.12 but it is not essential concludes minimum	111	(2)
	to see a substitution) (may appear in (c)) OR finds numerical values of A, observing greater than minimum value and draws conclusion	13 mar	ks

Q6, (OCR 4752, Jun 2011, Q11)

Q0, (OCK 4732, Juli 2011, Q11)			
(i) $200 - 2\pi r^2 = 2\pi rh$	M1	$100 = \pi r^2 + \pi r h$	sc3 for complete argument working backwards:
$h = \frac{200 - 2\pi r^2}{2\pi r}$ o.e.		3 2	$V = 100r - \pi r^3$
$n = {2\pi r}$ o.e.	M1	$100r = \pi r^3 + \pi r^2 h$	$\pi r^2 h = 100r - \pi r^3$
2,		$100r = \pi r^3 + V$	$\pi r h = 100 - \pi r^2$
substitution of correct h into $V = \pi r^2 h$	MII	$100r = \pi r^2 + V$	$100 = \pi r h + \pi r^2$ $200 = A = 2\pi r h + 2\pi r^2$
$V = 100r - \pi r^3$ convincingly obtained	A 1	$V = 100r - \pi r^3$	$200 = A = 2\pi r n + 2\pi r$
$V = 100r - \pi r$ convincingly obtained	AI	$V = 100r - \pi r$	sc0 if argument is incomplete
		or	set if argument is incomplete
		100	
		M1 for $h = \frac{V}{\pi r^2}$	
		The state of the s	
		M1 for $200 = 2\pi r^2 + 2\pi r \times \frac{V}{\pi r^2}$	
		M1 for $200 = 2\pi r^2 + 2\frac{V}{r}$ A1 for $V = 100r - \pi r^3$ convincingly	
		r	
		obtained $V = 100r - \pi r$ convincingly	
		obtained	
dV	B2	B1 for each term	allow 9.42() r^2 or better if decimalised
(ii) $\frac{dV}{dr} = 100 - 3\pi r^2$			
CC /			
$\frac{d^2V}{dr^2} = -6\pi r$	B1		10.04
	DI		-18.8() r or better if decimalised
ui	ы		-18.8() r or better if decimalised
ui		must contain r as the only variable	-18.8() r or better if decimalised
$\frac{dr^2}{\text{(iii) their }} \frac{dV}{dr} = 0 \text{ s.o.i.}$	M1	must contain r as the only variable	-18.8() r or better if decimalised
(iii) their $\frac{dV}{dr} = 0$ s.o.i.	M1		-18.8() r or better if decimalised
ui	M1	must contain r as the only variable A1 for $r = (\pm)\sqrt{\frac{100}{3\pi}}$; may be implied	-18.8() r or better if decimalised
(iii) their $\frac{dV}{dr} = 0$ s.o.i.	M1		-18.8() r or better if decimalised
(iii) their $\frac{dV}{dr} = 0$ s.o.i.	M1	A1 for $r = (\pm)\sqrt{\frac{100}{3\pi}}$; may be implied	-18.8() r or better if decimalised
(iii) their $\frac{dV}{dr} = 0$ s.o.i. r = 3.26 c.a.o.	M1 A2	A1 for $r = (\pm)\sqrt{\frac{100}{3\pi}}$; may be implied	
(iii) their $\frac{dV}{dr} = 0$ s.o.i.	M1	A1 for $r = (\pm)\sqrt{\frac{100}{3\pi}}$; may be implied by 3.25	-18.8() r or better if decimalised there must be evidence of use of calculus

Q7, (Edexcel 6664, Jun 2014, Q10)

(a)	$\frac{1}{2}(9x+6x)4x$			
	or $2x \times 15x$	1	t attempt at the area of a	
		trapezium.	$0x^2$ on its own or $30x^2$ from	
	or $\left(\frac{1}{2}4x\times(9x-6x)+6x\times4x\right)$	1	ork e.g. $5x \times 6x$ is M0.	
	or $6x^2 + 24x^2$		clear intention to find the	M1A1cso
	or $\left(9x \times 4x - \frac{1}{2}4x \times \left(9x - 6x\right)\right)$		A1 can be withheld if there	Willies
	or $36x^2 - 6x^2$			
	$\Rightarrow 30x^2y = 9600 \Rightarrow y = \frac{9600}{30x^2} \Rightarrow y = \frac{320}{x^2} *$	1	proof with at least one e step and no errors seen. quired.	
			•	[2]
(b)	$(S =) \frac{1}{2} (9x + 6x) 4x + \frac{1}{2} (9x + 6x) 4$			M1A1
	M1: An attempt to find the area of six faces of the			
	$(9x + 6x)4x$ or $60x^2$ and the 4 other faces may be of			
	included. There must be attempt at the areas of two t A1: Correct expression			
	Allow just $(S =) 60x^2 +$	•		
	$y = \frac{320}{x^2} \Rightarrow (S =) 30x^2 + 3$		>	M1
	Substitutes $y = \frac{320}{x^2}$ into their expression for S (may	be done earli	er). S should have at least	
	one x^2 term and one xy term but there may be other to incorrect.	erms which n	nay be dimensionally	
	So, $(S =) 60x^2 + \frac{7680}{x} *$		Correct solution only. "S = " is not required here.	A1* cso
				[4]

$\frac{dS}{dx} = 120x - 7680x^{-2} \left\{ = 120x - \frac{7680}{x^2} \right\}$	M1: Either $60x^2 \rightarrow 120x$ or $\frac{7680}{x} \rightarrow \frac{\pm \lambda}{x^2}$	M1
u (x)	A1: Correct differentiation (need not be simplified).	A1 aef
	M1: $S' = 0$ and "their $x^3 = \pm$ value"	
	or "their $x^{-3} = \pm$ value" Setting their $\frac{dS}{dx} = 0$	
$120x - \frac{7680}{x^2} = 0$	and "candidate's ft <u>correct</u> power of $x = a$ value". The power of x must be consistent with their differentiation. If inequalities are used this mark cannot be gained until candidate states value of x or S from their x without inequalities. $S' = 0$ can be implied by	
$\Rightarrow x^3 = \frac{7680}{120}; = 64 \Rightarrow x = 4$	$120x = \frac{7680}{x^2}$. Some may spot that $x = 4$ gives	M1A1cso
$3 \times 4 - \frac{120}{120}$, $-04 = 3 \times -4$	S' = 0 and provided they clearly show $S'(4) = 0$	
	allow this mark as long as S' is correct. (If S'	
	is incorrect this method is allowed if their derivative is clearly zero for their value of x)	
	A1: $x = 4$ only ($x^3 = 64 \implies x = \pm 4$ scores A0)	
	Note that the value of x is not explicitly required	
	so the use of $x = \sqrt[3]{64}$ to give $S = 2880$ would	
	imply this mark.	
Note some candidates stop here and do	o not go on to find S – maximum mark is 4/6	
$\{x = 4,\}$	Substitute candidate's value of $x \neq 0$ into a	ddM1
()	formula for S. Dependent on both previous M marks.	dulvii
$S = 60(4)^2 + \frac{7680}{4} = 2880 \text{ (cm}^2\text{)}$	2880 cso (Must come from correct work)	A1 cao and cso
$S = 60(4)^2 + \frac{7000}{4} = 2880 \text{ (cm}^2\text{)}$		and cso
$S = 60(4)^2 + \frac{7000}{4} = 2880 \text{ (cm}^2\text{)}$	2880 cso (Must come from correct work) M1: Attempt $S''(x^n \to x^{n-1})$ and considers	and cso
*	2880 cso (Must come from correct work)	and cso
$\frac{d^2S}{dx^2} = 120 + \frac{15360}{x^3} > 0$	2880 cso (Must come from correct work) M1: Attempt $S''(x^n \to x^{n-1})$ and considers sign. This mark requires an attempt at the second derivative and some consideration of its sign. There does not necessarily need to be any	and cso
*	2880 cso (Must come from correct work) M1: Attempt $S''(x^n \to x^{n-1})$ and considers sign. This mark requires an attempt at the second derivative and some consideration of its sign. There does not necessarily need to be any substitution. An attempt to solve $S'' = 0$ is M0 A1: $120 + \frac{15360}{x^3}$ and > 0 and conclusion. Requires a correct second derivative of	and cso
$\frac{d^2S}{dx^2} = 120 + \frac{15360}{x^3} > 0$	2880 cso (Must come from correct work) M1: Attempt $S''(x^n \to x^{n-1})$ and considers sign. This mark requires an attempt at the second derivative and some consideration of its sign. There does not necessarily need to be any substitution. An attempt to solve $S'' = 0$ is M0 A1: $120 + \frac{15360}{x^3}$ and > 0 and conclusion.	and cso
$\frac{d^2S}{dx^2} = 120 + \frac{15360}{x^3} > 0$	2880 cso (Must come from correct work) M1: Attempt $S''(x^n \to x^{n-1})$ and considers sign. This mark requires an attempt at the second derivative and some consideration of its sign. There does not necessarily need to be any substitution. An attempt to solve $S'' = 0$ is M0 A1: $120 + \frac{15360}{x^3}$ and > 0 and conclusion. Requires a correct second derivative of $120 + \frac{15360}{x^3}$ (need not be simplified) and a valid reason (e.g. > 0), and conclusion.	and cso [6]
$\frac{d^2S}{dx^2} = 120 + \frac{15360}{x^3} > 0$	M1: Attempt $S''(x^n \to x^{n-1})$ and considers sign. This mark requires an attempt at the second derivative and some consideration of its sign. There does not necessarily need to be any substitution. An attempt to solve $S'' = 0$ is M0 A1: $120 + \frac{15360}{x^3}$ and > 0 and conclusion. Requires a correct second derivative of $120 + \frac{15360}{x^3}$ (need not be simplified) and a valid reason (e.g. > 0), and conclusion. Only follow through a correct second derivative	and cso [6]
$\frac{d^2S}{dx^2} = 120 + \frac{15360}{x^3} > 0$	2880 cso (Must come from correct work) M1: Attempt $S''(x^n \to x^{n-1})$ and considers sign. This mark requires an attempt at the second derivative and some consideration of its sign. There does not necessarily need to be any substitution. An attempt to solve $S'' = 0$ is M0 A1: $120 + \frac{15360}{x^3}$ and > 0 and conclusion. Requires a correct second derivative of $120 + \frac{15360}{x^3}$ (need not be simplified) and a valid reason (e.g. > 0), and conclusion. Only follow through a correct second derivative i.e. x may be incorrect but must be positive	and cso [6]
$\frac{d^2S}{dx^2} = 120 + \frac{15360}{x^3} > 0$ $\Rightarrow Minimum$	2880 cso (Must come from correct work) M1: Attempt $S''(x^n \to x^{n-1})$ and considers sign. This mark requires an attempt at the second derivative and some consideration of its sign. There does not necessarily need to be any substitution. An attempt to solve $S'' = 0$ is M0 A1: $120 + \frac{15360}{x^3}$ and > 0 and conclusion. Requires a correct second derivative of $120 + \frac{15360}{x^3}$ (need not be simplified) and a valid reason (e.g. > 0), and conclusion. Only follow through a correct second derivative i.e. x may be incorrect but must be positive and/or S'' may have been evaluated incorrectly.	and cso [6]
$\frac{d^2S}{dx^2} = 120 + \frac{15360}{x^3} > 0$ $\Rightarrow Minimum$ A correct S'' followed by S''("4") = "360" the	2880 cso (Must come from correct work) M1: Attempt $S''(x^n \to x^{n-1})$ and considers sign. This mark requires an attempt at the second derivative and some consideration of its sign. There does not necessarily need to be any substitution. An attempt to solve $S'' = 0$ is M0 A1: $120 + \frac{15360}{x^3}$ and > 0 and conclusion. Requires a correct second derivative of $120 + \frac{15360}{x^3}$ (need not be simplified) and a valid reason (e.g. > 0), and conclusion. Only follow through a correct second derivative i.e. x may be incorrect but must be positive and/or S'' may have been evaluated incorrectly.	and cso [6]
$\frac{d^2S}{dx^2} = 120 + \frac{15360}{x^3} > 0$ $\Rightarrow \text{ Minimum}$ A correct S'' followed by S''("4") = "360" that A correct S'' followed B correct S'' followed B correct S'' followe	2880 cso (Must come from correct work) M1: Attempt $S''(x^n \to x^{n-1})$ and considers sign. This mark requires an attempt at the second derivative and some consideration of its sign. There does not necessarily need to be any substitution. An attempt to solve $S'' = 0$ is M0 A1: $120 + \frac{15360}{x^3}$ and > 0 and conclusion. Requires a correct second derivative of $120 + \frac{15360}{x^3}$ (need not be simplified) and a valid reason (e.g. > 0), and conclusion. Only follow through a correct second derivative i.e. x may be incorrect but must be positive and/or S'' may have been evaluated incorrectly.	and cso [6]
$\frac{d^2S}{dx^2} = 120 + \frac{15360}{x^3} > 0$ $\Rightarrow \text{ Minimum}$ A correct S" followed by S"("4") = "360" the second of	M1: Attempt $S''(x^n \to x^{n-1})$ and considers sign. This mark requires an attempt at the second derivative and some consideration of its sign. There does not necessarily need to be any substitution. An attempt to solve $S'' = 0$ is M0 A1: $120 + \frac{15360}{x^3}$ and > 0 and conclusion. Requires a correct second derivative of $120 + \frac{15360}{x^3}$ (need not be simplified) and a valid reason (e.g. > 0), and conclusion. Only follow through a correct second derivative i.e. x may be incorrect but must be positive and/or S'' may have been evaluated incorrectly. herefore minimum would score no marks in (d) hich is positive therefore minimum would score	and cso [6]