Differentiation Exam Questions MS (From OCR MEI 4752 unless otherwise stated)							
Q1, (Jan 2006, Q6)							
	2x-6]	B1				
•	0 at $x = 3$]	B1				
•	0 at $x = 3$	1	B1				
•	ving y' does not change sign	I	E1		orthat y'' changes sign	4	
		\perp				<u> </u>	
	nn 2007, Q1)						
$\frac{5}{2} \times 6$	$\frac{3}{2}$	1+1	1	- 1	if extra term		
$\frac{1}{2}$					2		
02 (1							
	nn 2009, Q7) x ⁻² o.e.	2		B	1 each term		
then	$r \frac{dy}{dx} = 0$	M	1 1	S.C	o.i.	5	
	ect step	D	M1	S.C	o.i.		
	½ c.a.o.	A	.1				
O4 (Ju	n 2007, Q9)	•	•				
	$y' = 6x^2 - 18x + 12$		M1	l	condone one error		
	= 12		M1		subst of $x = 3$ in their y'		
	y = 7 when $x = 3$		B1				
	tgt is $y - 7 = 12 (x - 3)$		M ₁		f.t. theiry and y'		
	verifying $(-1, -41)$ on tgt		A1		or B2 for showing line joining (3, 7) and (-1, -41) has gradient 12	5	
ii	y' = 0 soi		M ₁		Their y'	3	
	quadratic with 3 terms		M1		Any valid attempt at solution		
	x = 1 or 2		A1		orA1 for(1, 3) and A1 for(2,2) marking		
	y = 3 or 2		A1		to benefit of candidate	4	
iii	cubic curve correct orientation		G1				
	touching x- axis only at (0.2,0)		C1		£4		
	max and min correct curve crossing y axis only at -2		G1 G1		f.t.	3	
$y' = 3x^2 - 12x - 15$			M1	f	or two terms correct		
	of $y' = 0$, s.o.i. ft		M1				
	5, – 1 c.a.o.		A1				
<i>X</i> < -	-1 or $x > 5$ f.t.		A1 Δ1			5	

A1

5

Q5, (Jun 2009, Q6)

Q3, (Juli 2003, Q0)			
$y' = 3x^2 - 12x - 15$	M1	for two terms correct	
use of $y' = 0$, s.o.i. ft	M1		
x = 5, -1 c.a.o.	A1		
x < -1 or $x > 5$ f.t.	A1		
	A1		5

Q6, (Jan 2013, Q6)

$$6x^{2} + 18x - 24$$
 B1
their $6x^{2} + 18x - 24 = 0$ or > 0 or ≥ 0 M1
 -4 and $+ 1$ identified oe $x < -4$ and $x > 1$ cao A1 or $x \le -4$ and $x \ge 1$

[4]

Q7, (Jun 2009, Q12)

i	6.1	2	M1 for $\frac{(3.1^2-7)-(3^2-7)}{3.1-3}$ o.e.	2
ii	$\frac{\left((3+h)^2-7\right)-\left(3^2-7\right)}{h}$	M1	s.o.i.	
	numerator = $6h + h^2$ 6 + h	M1 A1		3
iii	as h tends to 0, grad. tends to 6 o.e. f.t.from "6"+h	M1 A1		2
iv	y-2 = "6" (x-3) o.e. y = 6x-16	M1 A1	6 may be obtained from $\frac{dy}{dx}$	2
V	At P, $x = 16/6$ o.e. or ft At Q, $x = \sqrt{7}$ 0.021 cao	M1 M1 A1		3

Q8, (Jan 2006, Q11)

i	$3x^2 - 6$	2	1 if one error	2
ii	$-\sqrt{2} < x < \sqrt{2}$	3	M1 forusing theiry'= 0 B1 f.t. forboth roots found	3
iii	subst $x = -1$ in their $y' = -3$ y = 7 when $x = -1y + 3x = 4x^3 - 6x + 2 = -3x + 4(2, -2)$ c.a.o.	B1 M1 A1 M1 A1,A1	f.t. f.t. 3 terms f.t.	
				6

Q9, (Jan 2007, Q5)

(i) −0.93, -0.930, -0.9297	2	M1 for grad = $(1 - \text{their } y_B)/(2 - 2.1)$ if M0, SC1 for 0.93	
(ii) answer strictly between 1.91 and 2 or 2 and 2.1	B1	don't allow 1.9 recurring	
(iii) $y' = -8/x^3$, gradient = -1	M1A1		5

Q10, (Jun 2014, Q11)

α_{10} , α_{10}	Jan 2014, Q11)		
(i)	$y' = 1 + 8x^{-3}$ $y'' = -24x^{-4}$ oe	M2	M1 for just $8x^{-3}$ or $1 - 8x^{-3}$
	$y'' = -24x^{-4}$ oe	A1	
		[3]	
(ii)	their $y' = 0$ soi	M1	
	x = -2	A1	A0 if more than one x-value
	y = -3	A1	A0 if more than one y-value
	substitution of $x = -2$: $\frac{-24}{(-2)^4}$	M1	or considering signs of gradient either side of -2 with negative x-values
	< 0 or $= -1.5$ oe correctly obtained isw	Al	signs for gradients identified to verify maximum
		[5]	
(iii)	y = -5 soi	B1	
	substitution of $x = -1$ in their y'	M1	may be implied by - 7
	grad normal = $^{-1}$ / _{their - 7}	M1*	may be implied by eg 1/7
	$y - \text{their}(-5) = \text{their}^{-1}/_{7}(x1)$	M1dep*	or their $(-5) = \text{their } {}^{1}/_{7} \times (-1) + c$
	-x + 7y + 34 = 0 oe	A1	allow eg $y - \frac{1}{7}x + \frac{34}{7} = 0$
		[5]	

Q11, (Jun 2016, Q10)

(i)	$\frac{\left(5.1^2 - 10.2\right) - \left(5^2 - 10\right)}{5.1 - 5} \text{ oe}$	M1	condone omission of brackets
	8.1	A1	
		[2]	

ALeve	elMathsRevision.com			
(ii)	$\frac{(5+h)^2 - 2(5+h) - \text{ their } 15}{h}$ oe	М	1	condone omission of brackets
	$25 + 10h + h^2 - 10 - 2h \text{ oe seen}$	М	1	allow one sign error
	numerator is $8h + h^2$	A	1	
	8 + h isw	A [4		
(iii)	h o 0	M1	may	be embedded; allow eg "tends to 0"
	their 8	A1 [2]	FT ti	heir $k + h$ from part (ii)
(iv)	y = 8x - 25 isw	B1		-15 = 8 (x - 5) isw = $8x + c \text{ and } c = -25 \text{ stated isw}$
	non-zero numerical value for x-intercept on their straight line found	M1		
	[x =] 3.125 oe	A1	may	be embedded in calculation for area
	$\frac{1}{2}$ × their non-zero <i>y</i> -intercept × their $\frac{25}{8}$	M1	cond	one arithmetic slips in finding values of cepts
	$\frac{625}{16}$ or $39\frac{1}{16}$ or 39.0625 isw	A1		pt rounded to 1 dp or better for A1 ; but final answer negative
	16	[5]	AUI	i mai answei negative

O12. (OCR 4721. Jun 2015. O9)

Q12, (OCR 4721, Jun 2015, Q9)		
(i)	$\frac{dy}{dx} = 6x^2 - 2ax + 8$	M1	Attempt to differentiate, at least two non-zero terms correct
	at	A1	Fully correct
	When $x = 4$, $\frac{dy}{dx} = 104 - 8a$	M1	Substitutes $x = 4$ into their $\frac{dy}{dx}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \text{ gives } a = 13$	M1 A1	Sets their $\frac{dy}{dx}$ to 0. Must be seen
(ii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 12x - 26$	[5] M1	Correct method to find nature of stationary point e.g. substituting $x = 4$ into second derivative (at least one term correct from their first derivative in (i)) and consider the sign
/*** <u></u>	When $x = 4$, $\frac{d^2y}{dx^2} > 0$ so minimum	A1 [2]	www
(iii)	$6x^2 - 26x + 8 = 0$	M1	Sets their derivative to zero
	(3x-1)(x-4)=0	M1	Correct method to solve quadratic (appx 1)
	$(3x-1)(x-4) = 0$ $x = \frac{1}{2}$	A1	oe
	3	[3]	
Q13, (OCR 4721, Jun 2016, Q8)		
(i)	$ y_1 = 50, y_2 = 2(5+h)^2$	B1 Fi	nds y coordinates at 5 and $5 + h$

	<u> </u>		
(i)	$y_1 = 50, y_2 = 2(5+h)^2$ $(50+20h+2h^2)-50$	B1	Finds y coordinates at 5 and $5 + h$
	$(50+20h+2h^2)-50$	M1	Correct method to find gradient of a line
	(5+h)-5		segment; at least 3/4 values correct
		A1	Fully correct working to give answer AG
	20+2h	[3]	
(ii)	e.g. "As h tends to zero, the gradient will be	B1	Indicates understanding of limit See Appendix 2
	20"	[1]	for examples
(iii)	Gradient of normal = $-\frac{1}{20}$	B1	
	$y - 50 = -\frac{1}{20}(x - 5), x = 0$	M1	Gradient of line must be numerical negative reciprocal of their gradient at A through their A
	501/4	A1 [3]	Correct coordinate in any form e.g. $\frac{201}{4}, \frac{1005}{20}$

Q14, (OCR 4721, Jun 2016, Q11)

$$y = 4x^{2} + ax^{-1} + 5$$
$$\frac{dy}{dx} = 8x - ax^{-2}$$

At stationary point, $8x - ax^{-2} = 0$ $a = 8x^3$ oe

When
$$a = 8x^3$$
, $y = 32$
 $32 = 4x^2 + 8x^2 + 5$
 $x = \frac{3}{2}$ **oe**

$$a = 27$$

OR

$$y = 4x^{2} + ax^{-1} + 5$$
$$\frac{dy}{dx} = 8x - ax^{-2}$$

$$32 = 4x^2 + ax^{-1} + 5$$
$$a = 27x - 4x^3$$

At stationary point,
$$8x - ax^{-2} = 0$$

 $8x - (27x - 4x^3)x^{-2} = 0$
 $x = \frac{3}{2}$ oe

$$a = 27$$

B1	ax^{-1} soi
M1	Attempt to differentiate – at least one non-zero
	term correct
A1	Fully correct
M1	Sets their derivative to 0
A1	Obtains expression for a in terms of x , or x in
	terms of a www
M1	Substitutes their expression and 32 into equation
	of the curve to form single variable equation
A1	Obtains correct value for x. Allow $x = \sqrt{\frac{27}{12}}$.
	Ignore $-\frac{3}{2}$ given as well.
A1 [8]	Obtains correct value for a. Ignore –27 given as well.
B1	ax^{-1} soi
M1	Attempt to differentiate – at least one non-zero
	term correct
A1	Fully correct
M1	Substitutes 32 into equation of the curve to find
	expression for a
A1	Obtains expression for a in terms of x www
M1	Sets derivate to zero and forms single variable equation
A1	Obtains correct value for x. Allow $x = \frac{27}{27}$.

Ignore $-\frac{3}{2}$ given as well.

Obtains correct value for a. Ignore -27 given as

A1

Q15, (OCR 4721, Jun 2017, Q11)

(i)	Gradient of given line = 6	B1	soi as gradient of the line
	Perpendicular gradient = $-\frac{1}{6}$	M1	Uses product of perpendicular gradients is – 1 at some point; may be implied by later working.
	$\frac{dy}{dy} = -2kx^{-3}$	M1	Attempt to differentiate (ax^{-3} seen)
	$\frac{dx}{dx} = -2\kappa x$	A1	Fully correct
	$\frac{dy}{dx} = -2kx^{-3}$ $-\frac{1}{6} = -2k(-3)^{-3}$ $k = -\frac{9}{4}$	M1	Equates their derivative at $x = -3$ with their perpendicular gradient
	7	A1 [6]	Correct value of k . Allow $-\frac{27}{12}$ etc.
(ii)	When $x = -3$, $y = -\frac{9}{4(-3)^2} = -\frac{1}{4}$ $y + \frac{1}{4} = 6(x + 3)$	B1	Correct value of y www
	$y + \frac{1}{4} = 6(x + 3)$	M1	Attempts equation of straight line through
	4		(-3, y), any non-zero gradient. y must be from their k but allow slips for M mark.
		A1ft	Correct equation in any form – gradient 6 but
	24x - 4y + 71 = 0		ft their value of $\frac{k}{9}$. Allow 6 $(x3)$
		A1	Correct equation in required form i.e. $a(24x - 4y + 71) = 0$ for integer a, terms in
		141	any order. cao
		[4]	

Q16, (Jun 2010, Q10)

ALevelMathsRevision.com					
(i)	$\frac{dy}{dx} = 4x^3$ when $x = 2$, $\frac{dy}{dx} = 32$ s.o.i.	M1			
	when $x = 2$, $\frac{dy}{dx} = 32$ s.o.i.	A1	i.s.w.		
	when $x = 2$, $y = 16$ s.o.i.	B1			
	y = 32x - 48 c.a.o.	A1			
(ii)	34.481	2	M1 for $\frac{2.1^4-2^4}{0.1}$		
(iii) (A)	$16 + 32h + 24h^2 + 8h^3 + h^4 \text{ c.a.o.}$	3	B2 for 4 terms correct B1 for 3 terms correct		
(iii) (<i>B</i>)	$32 + 24h + 8h^2 + h^3$ or ft	2	B1 if one error		
(iii) (C)	as $h \to 0$, result \to their 32 from (iii) (B)	1			
	gradient of tangent is limit of gradient of chord	1			
Q17, (OCR H230/02, Sample Question Paper, Q7)					

Q17, (OCR H230/02, Sample Question Paper, Q7)

$f(x+h) = x^4 + 4x^3h + 6x^2h^2 + 4xh^3 + h^4$	M1	1.1	Attempt at expansion with product of
			powers of x and h summing to 4 and
			some attempt at coefficients, not
			necessarily correct
$\frac{f(x+h)-f(x)}{h} = \frac{4x^3h+6x^2h^2+4xh^3+h^4}{h}$	M1	1.1	Attempt $\frac{f(x+h)-f(x)}{h}$
n n			Allow at most two errors
$=4x^3+6x^2h+4xh^2+h^3$	A1	1.1	All terms correct
As $h \rightarrow 0$ all the terms in h tend to zero.	A1	2.4	Accept some indication that as h tends
f(x+h)-f(x)			to 0, the terms involving h vanish and
Therefore $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = 4x^3$			leave $4x^3$
	E1	2.1	Award for good use of language, and
			of limit and function notation
	[5]		