Least Squares Regression Line

Q1, (OCR 4767, Jan 2007, Q1i-iii)

(i)			
	\bar{t} = 112.8, \bar{v} = 0.6	B1 for \bar{t} and \bar{v} used (SOI)	
	$b = \frac{Svt}{Svv} = \frac{405.2 - 3 \times 564/5}{2.20 - 3^2/5} = \frac{66.8}{0.4} = 167$	M1 for attempt at gradient	
	OR $b = \frac{405.2/5 - 0.6 \times 112.8}{2.20/5 - 0.6^2} = \frac{13.36}{0.08} = 167$	A1 for 167 CAO	
	$2.20/5 - 0.6^2$ 0.08	M1 for equation of line	
	hence least squares regression line is: $t - \bar{t} = b(v - \bar{v})$	A1 FT	
	$\Rightarrow t - 112.8 = 167(v - 0.6) \Rightarrow t = 167v + 12.6$		
	$\Rightarrow t = 1677 + 12.6$		5
(ii)	(4) = 0.5%		
	(A) For 0.5 litres, predicted time = = 167 × 0.5 + 12.6 = 96.1 seconds	M1 for at least one prediction attempted	
		prediction attempted	
	(B) For 1.5 litres, predicted time = = 167 ×1.5 + 12.6 = 263.1 seconds	A1 for both answers (FT their equation if <i>b</i> >0) NB for reading predictions off	
	Any valid relevant comment relating to each prediction such as eg: 'First prediction is fairly reliable as it is interpolation	the graph only award A1 if accurate to nearest whole number	
	and the data is a good fit'	E1 (first prediction)	
	'Second prediction is less certain as it is an extrapolation'	E1 (second prediction)	4
(iii)	The v-coefficient is the number of additional seconds	E1 for indication of rate wrt	
	required for each extra litre of water	E1 dep for specifying ito units	2

Q2, (Jan 2008, Q1i-iii)

(i)	x is independent, y is dependent since the values of x are chosen by the student but the values of y are dependent on x $\overline{x} = 2.5, \ \overline{y} = 80.63$ $b = \frac{Sxy}{Sxx} = \frac{2530.3 - 30 \times 967.6/12}{90 - 30^2/12} = \frac{111.3}{15} = 7.42$	B1 E1 dep E1 dep B1 for \bar{x} and \bar{y} used (SOI) M1 for attempt at gradient	3
	OR $b = \frac{2530.3/12 - 2.50 \times 80.63}{90/12 - 2.50^2} = \frac{9.275}{1.25} = 7.42$	(b) A1 for 7.42 cao	
	Hence least squares regression line is: $y - \overline{y} = b(x - \overline{x})$	M1 for equation of line	
	$\Rightarrow y - 80.63 = 7.42(x - 2.5)$ $\Rightarrow y = 7.42x + 62.08$	A1 FT (<i>b</i> >0) for complete equation	5
(iii)	(A) For x = 1.2, predicted growth = 7.42 × 1.2 + 62.08 = 71.0 (B) For x = 4.3, predicted growth = 7.42 × 4.3 + 62.08 = 94.0	M1 for at least one prediction attempted. A1 for both answers (FT their equation if <i>b</i> >0)	
	Valid relevant comments relating to the predictions such as: Comment re interpolation/extrapolation Comment relating to the fact that <i>x</i> = 4.3 is only just beyond the existing data. Comment relating to size of residuals near each predicted value (need not use word 'residual')	E1 (first comment) E1 (second comment)	4

Q3, (OCR 4732, Jan 2005, Q9)

	_	
x is independent, y is dependent	B1	
since the values of x are chosen by the student	E1 dep	
but the values of y are dependent on x	E1 dep	3
\bar{x} = 2.5, \bar{y} = 80.63	B1 for \bar{x} and \bar{y} used	
$b = \frac{Sxy}{Sxx} = \frac{2530.3 - 30 \times 967.6/12}{90 - 30^2/12} = \frac{111.3}{15} = 7.42$	(SOI)	
	M1 for attempt at gradient (b) A1 for 7.42 cao	
$90/12 - 2.50^2$ 1.25 Hence least squares regression line is: $y - \overline{y} = b(x - \overline{x})$	M1 for equation of line	
$\Rightarrow y - 80.63 = 7.42(x - 2.5)$ \Rightarrow y = 7.42x + 62.08	A1 FT (<i>b</i> >0) for complete equation	5
(A) For x = 1.2, predicted growth = 7.42 × 1.2 + 62.08 = 71.0 (B) For x = 4.3, predicted growth = 7.42 × 4.3 + 62.08 = 94.0	M1 for at least one prediction attempted. A1 for both answers (FT their equation if <i>b</i> >0)	
Valid relevant comments relating to the predictions such as: Comment re interpolation/extrapolation Comment relating to the fact that <i>x</i> = 4.3 is only just beyond the existing data. Comment relating to size of residuals near each	E1 (first comment) E1 (second comment)	4
	since the values of x are chosen by the student but the values of y are dependent on x $\overline{x} = 2.5, \ \overline{y} = 80.63$ $b = \frac{Sxy}{Sxx} = \frac{2530.3 - 30 \times 967.6/12}{90 - 30^2/12} = \frac{111.3}{15} = 7.42$ $OR \ b = \frac{2530.3/12 - 2.50 \times 80.63}{90/12 - 2.50^2} = \frac{9.275}{1.25} = 7.42$ Hence least squares regression line is: $y - \overline{y} = b(x - \overline{x})$ $\Rightarrow y - 80.63 = 7.42(x - 2.5)$ $\Rightarrow y = 7.42x + 62.08$ (A) For $x = 1.2$, predicted growth $= 7.42 \times 1.2 + 62.08 = 71.0$ (B) For $x = 4.3$, predicted growth $= 7.42 \times 4.3 + 62.08 = 94.0$ Valid relevant comments relating to the predictions such as: Comment re interpolation/extrapolation Comment relating to the fact that $x = 4.3$ is only just beyond the existing data.	since the values of x are chosen by the student but the values of y are dependent on x $\bar{x} = 2.5, \ \bar{y} = 80.63$ $b = \frac{Sxy}{Sxx} = \frac{2530.3 - 30 \times 967.6/12}{90 - 30^2/12} = \frac{111.3}{15} = 7.42$ $OR \ b = \frac{2530.3/12 - 2.50 \times 80.63}{90/12 - 2.50^2} = \frac{9.275}{1.25} = 7.42$ Hence least squares regression line is: $y - \bar{y} = b(x - \bar{x})$ $\Rightarrow y - 80.63 = 7.42(x - 2.5)$ $\Rightarrow y = 7.42x + 62.08$ (A) For $x = 1.2$, predicted growth $= 7.42 \times 1.2 + 62.08 = 71.0$ (B) For $x = 4.3$, predicted growth $= 7.42 \times 4.3 + 62.08 = 94.0$ Valid relevant comments relating to the predictions such as: Comment re interpolation/extrapolation Comment relating to the fact that $x = 4.3$ is only just beyond the existing data. Comment relating to size of residuals near each

Q4, (OCR 4732, Jan 2009, Q2)

(i)(a)	$\frac{8736.9 - \frac{202 \times 245.3}{7}}{7300 - \frac{202^2}{7}} \text{ or } \frac{1658.24}{1470.86}$	M1		correct sub in any correct formula for b eg $\frac{236.8921}{210.1249}$
	= 1.127 (= 1.13 AG)	A1	2	must see 1.127; 1.127 alone: M1A1
(b)	$y - \frac{245.3}{7} = 1.13(x - \frac{202}{7})$ y = 1.1x + 2.5 (or 2.4) or $y = 1.13x + 2.43$	M1		or $a = \frac{245.3}{7} - 1.13 \times \frac{202}{7}$
	y = 1.1x + 2.5 (or 2.4) or $y = 1.13x + 2.43$	A 1	2	2 sfs suff.
				(exact: $y = 1.127399x + 2.50934$)
(ii)(a)	$(1.1() \times 30 + 2.5()) = 35.5 \text{ to } 36.5$	B1f	1	
(b)	$(1.1() \times 100 + 2.5()) = 112.4 \text{ to } 115.6$	B1f	1	
(iii)	(a) Reliable	B1		Both reliable: B1 (a) more reliable than (b) B1
	(b) Unreliable because extrapolated	B1	2	because (a) within data or (b) outside data B1 Ignore extras

Q5, (OCR 4767, Jan 2013, Q1)

(i)				
	2.5 Hengy 1.5 0 2.5 0 2.6 0 1.5 0 Thickness	G1 G2,1,0	G1 For axes suitably labelled with some indication of linear scale provided. G2 for points plotted correctly. G1 if 4 points plotted correctly. G0 if two or more incorrectly plotted/omitted points. Special Case SC1 for points visibly correct on axes where no indication of scale has been provided.	Allow x & y Allow axes reversed.
		[3]		
(ii)	Thickness is the independent variable since the values of 'Thickness' are not subject to random variation, but are determined by the manufacturer.	El	Allow explanations referring to thickness being "controlled" by the manufacturer. Allow equivalent interpretations.	
		[1]		
(iii)	$\bar{t} = 60, \ \bar{h} = 1.548$	B1	For \overline{t} and \overline{h} used. SOI (e.g. can be implied by $b = 0.0206$)	
	$b = \frac{S_{th}}{S_{tt}} = \frac{546.8 - (300 \times 7.74 / 5)}{22000 - 300^2 / 5} = \frac{82.4}{4000} =$	M1*	For attempt at calculating gradient (b) for h on t .	
	0.0206	A1	For 0.0206 cao	
	OR $b = \frac{546.8/5 - (60 \times 1.548)}{22000/5 - 60^2} = \frac{16.48}{800} = 0.0206$ hence least squares regression line is:			
	$h-\overline{h} = b(t-\overline{t})$			

Q6, (OCR 4767, Jun 2015, Q1i,ii,iv,v)

(i)	70 60 50 40 30 20 0 1 2 3 Time (days)	G1* G1dep*	Both axes labeled (allow t and y) with indication of scale for values of time BOD if (0,0) not clearly visible for values of average growth BOD if (0,0) not clearly visible. BOD if confusion arises from points plotted for part (v).	Allow axes interchanged Condone x for t (evenly spaced) visually correct SC1 for points having the correct distribution and G0* awarded. Line through origin should appear but this is rewarded in part (v)
(ii)	$ \bar{t} = 1.5, \ \bar{y} = 32 $ $ b = \frac{S_{yt}}{S_{tt}} = \frac{490 - (224 \times 10.5 / 7)}{22.75 - 10.5^{2} / 7} = \frac{154}{7} = 22 $ $ OR \ b = \frac{490 / 7 - (32 \times 1.5)}{22.75 / 7 - 1.5^{2}} = \frac{22}{1} = 22 $ hence least squares regression line is: $ y - \bar{y} = b(t - \bar{t}) $ $ \Rightarrow y - 32 = 22(t - 1.5) $ $ \Rightarrow y = 22t - 1 $	[3] B1 M1 A1 A1 [5]	For \overline{t} and \overline{y} seen or implied by final answer. For attempt at gradient (b) For 22 cao For equation of line CAO	Seen either in calculating b or in forming the equation of the line. Correct structure needed. See additional notes. FT their \overline{t} and \overline{y} for M1 With their $b > 0$, \overline{t} and \overline{y} A0 for $y = 22x - 1$

(iv)	$(22 \times 5) - 1 = 109$	B1	Estimate calculated using equation	FT their equation
	Likely to be unreliable as extrapolation (oe)	B1 [2]		
(v)	$a = \frac{490}{22.75} = 21.5 38 = 21.5 (3 \text{ s.f.})$ Equation is $y = 21.5t$ Line plotted on diagram	M1 A1 A1 A1	Allow $y = 21.54t$ CAO For line correctly plotted CAO A0 if axes not scaled or $a \neq 21.5$ to 3 sf	Allow $y = (280/13)t$ Through (0,0) and between (3, 64) and (3,65)

Q7, (OCR 4732, Jun 2016, Q2ii)

ii	а	'Increased' and		'Increased' and	'Incr	eased' <u>and</u>	NOT:
		Positive gradient or positive coeff of <i>n</i> or 'Output goes up by 0.6 each month' Both needed	B1 [1]	values of z shown as follows: at least 6 values or 1st and last values or 1st, or 2nd or 3rd or 4th <u>and</u> 9th or10th or 11th or 12th ie 17.6 or 18.2 or 18.8 or 19.4 <u>and</u> 22.4 or 23 or 23.6 or 24.2	"Value increa	of 0.6n increases as n ises'	'Increased' and 'Value of z incr as n incr' 'z incr as no. of mths incr
ii	b	$\bar{n} = 6.5$ or $\frac{78}{12}$ oe seen	B1				
		$\bar{z} = 0.6 \times 6.5' + 17$ alone, eg not ÷12 or $17 = \bar{z} - 0.6 \times 6.5'$ oe	M1	or (0.6×1+17+0.6×2+17+0.6×12+17)÷12 oe or '250.8'÷12 M1 ft their '6.5' only if comes from÷12		Long method, all correct terms seen and +12 M1 NB ans 20.9 may not score the B1	
		$\bar{z} = 20.9$	A1 [3]	cao			
ii	С	Total output = "20.9" × 12	M1	or 0.6×1+17+0.6×2+17+0.6×12+17	7 oe	Long method, all co	orrect terms seen
		251 (3 sf)	A1f [2]	or eg $\frac{88}{5} + \frac{91}{5} + + \frac{121}{5}$ oe ft their (ii)(b)		Not ISW, eg 25100 scores A	0, even if 251 seen
			10				