Integration of Rational Functions Exam Questions MS

Q1, (OCR 4724, Jun 2006, Q3)

- $\frac{A}{x} + \frac{B}{3-x}$ & c-u rule or $A(3-x) + Bx \equiv 3-2x$
- **M1** Correct format + suitable method

- **A1**
- seen in (i) or (ii)

- **A1**
- 3 ditto; $\frac{1}{x} \frac{1}{3-x}$ scores 3 immediately

(ii) $\int \frac{1}{x} (\mathrm{d}x) = \ln x \text{ or } \ln |x|$

- **B1**
- $\int \frac{1}{3-x} (dx) = -\ln(3-x) \text{ or } -\ln|3-x|$
- Check sign carefully; do not allow ln(x-3)**B1**
- Correct method idea of substitution of limits $\ln 2 (+ \ln 1 - \ln 1) - \ln 2 = 0$
- **M1** Dep on an attempt at integrating **A1** 4 Clearly seen; WWW AG

Alternative Method

- $\ln x(x-3) \rightarrow 0$ **B2**
- If ignoring PFs, $\ln x(3 x)$ immediately As before
- M1,A1 (4)
- (iii) Suitable statement or clear implication e.g. Equal amounts (of area) above and below (axis) or graph crosses axis or there's a root
- **B1** 1

Q2, (OCR 4724, Jan 2007, Q6)

(Be lenient)

(i) $2x+1=/\equiv A(x-3)+B$

M1 **A**1

A = 2B = 7

- A/B 1
- 3 Cover-up rule acceptable for B1

- (ii) $\int \frac{1}{x-3} (dx) = \ln(x-3) \text{ or } \ln|x-3|$
- B1
 - Accept A or $\frac{1}{4}$ as a multiplier

 $\int \frac{1}{(x-3)^2} (dx) = -\frac{1}{x-3}$

- **B**1
- Accept B or $\frac{1}{B}$ as a multiplier

- $6 + 2 \ln 7$ Follow-through $\frac{6}{7}B + A \ln 7$
- √B2

Q3, (OCR 4724, Jun 2009, Q6)

(i)
$$4x = A(x-3)^2 + B(x-3)(x-5) + C(x-5)$$

$$A = 5$$
$$B = -5$$

M1

$$C = -6$$

Cands adopting other alg. manip. may be awarded M1 for a full satis method + 3 @ A1

(ii)
$$\int \frac{A}{x-5} dx = A \ln(5-x) \text{ or } A \ln|5-x| \text{ or } A \ln|x-5| \qquad \text{$\sqrt{B1}$} \qquad \text{but } \underline{\text{not}} A \ln(x-5)$$

$$\int \frac{B}{x-3} dx = B \ln(3-x) \text{ or } B \ln|3-x| \text{ or } B \ln|x-3| \qquad \forall B1 \qquad \text{but } \underline{\text{not}} B \ln(x-3)$$

If candidate is awarded B0,B0, then award SR $\sqrt{B1}$ for $A \ln(x-5)$ and $B \ln(x-3)$

$$\int \frac{C}{(x-3)^2} \, \mathrm{d}x = -\frac{C}{x-3}$$
 $\sqrt{B1}$

$$5 \ln \frac{3}{4} + 5 \ln 2$$
 aef, isw $\sqrt{A \ln \frac{3}{4}} - B \ln 2$ $\sqrt{B1}$ Allow if **SR** B1 awarded

$$-3$$
 $\sqrt{\frac{1}{2}}C$ $\sqrt{\text{B1 5}}$

9 [Mark at earliest correct stage & isw; no ln 1]

Q4, (OCR 4724, Jun 2007, Q7)

(i) Leading term in quotient =
$$2x$$
 B1
Suff evidence of division or identity process M1
Quotient = $2x + 3$ A1 Stated or in relevant position in division

Α1 Remainder = x

Remainder =
$$x$$

(ii) their quotient + $\frac{\text{their remainder}}{x^2 + 4}$

Al Accept $\frac{x}{x^2 + 4}$ as remainder

 $\sqrt{B1}$

1 $2x + 3 + \frac{x}{x^2 + 4}$

(iii) Working with their expression in part (ii) their Ax + B integrated as $\frac{1}{2}Ax^2 + Bx$

their
$$\frac{Cx}{x^2 + 4}$$
 integrated as $k \ln(x^2 + 4)$ M1 Ignore any integration of $\frac{D}{x^2 + 4}$

Limits used correctly throughout M1 $14 + \frac{1}{2} \ln \frac{13}{5}$ 5 logs need not be combined. Α1