Integration By Parts MS (From OCR 4724)

Q1, (Jun 2005, Q2)

	M1	For attempt at parts going corr	ect way	1
		For attempt at parts going corr $(u = x, dv = \cos x \text{ and } f(x) +/-\int_{0}^{x} dx$	g(x) (dx))
$x \sin x - \int \sin x dx$	A1	For both terms correct		
$(= x \sin x + \cos x)$	B1	Indic anywhere that ∫ sin x dx =	= - cos	X
	M1	For correct method of limits		
Answer = $\frac{1}{2}\pi - 1$	A1 5	For correct exact answer	ISW	5
	l			

Q2, (Jan 2006, Q4)

(i) Parts using correct split of u = x, $\frac{dv}{dx} = \sec^2 x$ M1 1st stage result of form

$$f(x) + /- \int g(x) dx$$

$$x \tan x - \int \tan x dx$$
A1 Correct 1st stage

 $\int \tan x \, dx = -\ln \cos x \quad \text{or } \ln \sec x$

 $x \tan x + \ln \cos x + c$ or $x \tan x - \ln \sec x + c$ A1

(ii) $\tan^2 x = +/-\sec^2 x +/-1$ M1 or $\sec^2 x = +/-1+/-\tan^2 x$ $\int x \sec^2 x \, dx - \int x \, dx$ s.o.i. A1 Correct 1st stage $x \tan x + \ln \cos x - \frac{1}{2}x^2 + c$ A1 $\sqrt{3}$ f.t. their answer to part (i) $-\frac{1}{2}x^2$

Q3, (Jan 2007, Q2)

Use parts with $u = \ln x$, $dv = x$	M1	& give 1 st stage in form $f(x) + /- \int g(x)(dx)$
Obtain $\frac{1}{2}x^2 \ln x - \int \frac{1}{x} \cdot \frac{1}{2}x^2 (dx)$	A1	or $\frac{1}{2}x^2 \ln x - \int \frac{1}{2}x(dx)$
$= \frac{1}{2}x^2 \ln x - \frac{1}{4}x^2 (+c)$	A1	
Use limits correctly	M1	
Exact answer $2 \ln 2 - \frac{3}{4}$	A1 5	AEF ISW

Q4, (Jun 2007, Q2)

Use parts with
$$u=x^2$$
, $dv=e^x$

Obtain $x^2e^x-\int 2xe^x$ (dx)

Attempt parts again with $u=(-)(2)x$, $dv=e^x$

Hand $u=(-)(2)x$, $dv=e^x$

Final $u=(x^2-2x+2)e^x$ AEF incl brackets

Use limits correctly throughout $u=(-)(2)x$, $u=(-)(2$

Q5, (Jan 2010, Q8)

(i)
$$-\sin x e^{\cos x}$$

B1 1

(ii)
$$\int \sin x e^{\cos x} dx = -e^{\cos x}$$

B1 anywhere in part (ii)

Parts with split
$$u = \cos x$$
, $dv = \sin x e^{\cos x}$

M1 result $f(x) + -\int g(x) dx$

Indef Integ, 1st stage
$$-\cos x e^{\cos x} - \int \sin x e^{\cos x} dx$$
 A1

accept ... $-\int -e^{\cos x} - \sin x dx$

Second stage =
$$-\cos x e^{\cos x} + e^{\cos x}$$

*A1

Final answer
$$= 1$$

dep*A2 6

7

Q6, (Jun 2010, Q9i)

Attempt to multiply out
$$(x + \cos 2x)^2$$

M1 Min of 2 correct terms

Finding
$$\int 2x \cos 2x \, dx$$

Use
$$u = 2x$$
, $dv = \cos 2x$

M1 1st stage
$$f(x)+/-\int g(x) dx$$

$$1^{st}$$
 stage $x \sin 2x - \int \sin 2x \, dx$

$$\int 2x \cos 2x \, dx = x \sin 2x + \frac{1}{2} \cos 2x$$

A1

Finding
$$\int \cos^2 2x \, dx$$

Change to
$$k \int +/-1+/-\cos 4x \, dx$$

M1 where $k = \frac{1}{2}$, 2 or 1

Correct version
$$\frac{1}{2}\int 1 + \cos 4x \, dx$$

A1

$$\int \cos 4x \, \mathrm{d}x = \frac{1}{4} \sin 4x$$

B1 seen anywhere in this part

Result =
$$\frac{1}{2}x + \frac{1}{8}\sin 4x$$

A1

(i) ans =
$$\frac{1}{3}x^3 + x \sin 2x + \frac{1}{2}\cos 2x + \frac{1}{2}x + \frac{1}{8}\sin 4x$$
 (+ c)

A19 Fully correct

Q7, (Jun 2013, Q2)

-	<u>Q7, (Juli 2013, Q2)</u>			
	$u = \ln 3x$ and dv or $\frac{dv}{dx} = x^8$	M1	integ by parts as far as $f(x)+/-\int g(x)(dx)$	If difficult to assess, x^8 must be integrated, so look for term in x^9
	$\frac{\mathrm{d}}{\mathrm{d}x}(\ln 3x) = \frac{1}{x} \text{ or } \frac{3}{3x}$	В1	stated or clearly used	
	$\frac{x^9}{9} \ln 3x - \int \frac{x^9}{9} \text{their } \frac{du}{dx} (dx) \text{ FT}$	√ A 1	i.e. correct understanding of 'by parts'	even if $ln(3x)$ incorrectly differentiated
	Indication that $\int kx^8 dx$ is required	M1	i.e. before integrating, product of terms must be taken	The product may already have been indicated on the previous line
	$\frac{x^9}{9} \ln 3x - \frac{x^9}{81}$ or $\frac{1}{9} x^9 \left(\ln 3x - \frac{1}{9} \right)$ ISW (+c) <u>cao</u>	A1	$\frac{1}{9}\frac{x^9}{9}$ to be simplif to $\frac{x^9}{81}$; $\frac{3x^9}{243}$ satis	
		[5]		
	If candidate manipulates $ln(3x)$ first of all			
	$\ln(3x) = \ln 3 + \ln x$	B1		If, however, $ln(3x)$ is said to be $ln 3.ln$
	$u = \ln x$ and $dv = x^8$	M1	In order to find $\int x^8 \ln x dx$:	x, then B0 followed by possible M1 A1
	$\frac{x^9}{9} \ln x - \int \frac{x^9}{9} \cdot \frac{1}{x} (dx) \text{or better}$	A1	in order to find j w in way.	A1 in line with alternative solution on LHS, where the 'M' mark is for dealing with
	$\frac{x^9}{9}\ln x - \frac{x^9}{81}$	A1		$\int x^8 \ln x dx$ 'by parts' in the right order and the 2 @ A1 are for correct results.
	Their $\int x^8 \ln x dx + \frac{x^9}{9} \ln 3$ (+ c) FT ISW	√A1		

Q8, (Jun 2014, Q8)

(i)	t^2 in quotient and $t^3 + 2t^2$ seen	B1	or $\frac{t(t^2-4)+4t}{(t+2)}$	or $\frac{(t+2)^3 - 6t^2 - 12t - 8}{(t+2)}$
	$-2t$ in quotient and $-2t^2 - (-2t^2 - 4t) = 4t$ seen	В1	$\frac{t(t+2)(t-2)}{(t+2)} + \frac{4t}{t+2}$	$\frac{(t+2)^3}{(t+2)} - \frac{6((t+2)^2 - 4t - 4) + 12t + 8}{(t+2)}$ oe
	completion to obtain correct quotient and remainder identified www	В1	$t(t-2) + \frac{4(t+2)-8}{t+2}$	$(t+2)^2 - 6(t+2) + \frac{12t+16}{t+2} \text{ oe}$ $= t^2 + 4t + 4 - 6t - 12 + \frac{12(t+2) - 8}{t+2} \text{ oe}$
		[3]		both steps needed for final B1
(i)	alternatively $\frac{t^3}{t+2} = At^2 + Bt + C + \frac{D}{(t+2)}$	В1	or $t^3 = (At^2 + Bt + C)(t+2) + D$	or B1 for $\frac{t^2(t+2)-2t^2}{(t+2)}$
	equate coefficients to obtain correctly $A = 1$, $0 = 2A + B$ and $B = -2$ www	ВІ		B1 for $t^2 + \frac{-2t(t+2) + 4t}{(t+2)}$
	0 = 2B + C and $0 = 2C + D$ obtained and solved correctly www	B1		B1 for $t^2 - 2t + \frac{4(t+2) - 8}{(t+2)}$
		[3]		

ALC VCII VI did its inclusion it conti							
(ii)	integration by parts with $u = \ln(t + 2)$ and $dv = 6t^2$ to obtain $f(t) \pm \int g(t)(dt)$	M1*	$f(t)$ must include t^3 and $g(t)$ must not include a logarithm	ignore spurious dx etc			
	$2t^3 \ln(t+2) - \int \frac{2t^3}{t+2} (dt) \operatorname{cao}$	A1		alternatively, following $u = t + 2$			
	result from part (i) seen in integrand; must follow award of at least first M1	M1*	no integration required for this mark	$\int 2(u^2 - 6u + 12 - \frac{8}{u}) du \text{ oe}$			
	$F[t] = 2t^3 \ln(t+2) \pm \frac{2t^3}{3} \pm 2t^2 \pm 8t \pm 16 \ln(t+2)$	A1	$2t^{3} \ln(t+2) - \frac{2t^{3}}{3} + 2t^{2} - 8t + 16 \ln(t+2)$	3			
				$2t^3\ln(t+2)$			
	their F[2] – F[1]	M1dep*	at least one of their terms correctly integrated	NB limits following substitution are $u = 4$ and $u = 3$			
	$-6\frac{2}{3} - 18\ln 3 + 32\ln 4$ oe cao	A1					
	0,0 00000 00000						
		[6]					

Q

Q9, (Jun 2016, Q4)			
$Ax^{\frac{2}{3}} \ln x - \int Bx^{\frac{2}{3}} \times \frac{1}{x} dx \text{ oe}$	M1*	A and B are non-zero constants;	
$\frac{3}{2}x^{\frac{2}{3}}\ln x - \int \frac{3}{2}x^{\frac{2}{3}} \times \frac{1}{x} dx$	A1	ignore + c	NB $\frac{3}{2}x^{\frac{2}{3}} \ln x - \int \frac{3}{2}x^{-\frac{1}{3}} dx$ Allow both marks if dx omitted
$F[x] = \frac{3}{2}x^{\frac{2}{3}} \ln x - \frac{\frac{3}{2}}{\frac{2}{3}}x^{\frac{2}{3}}$	A1	ignore limits for first three marks	
F[8] – F[1]	M1*dep	and also dependent on integration of their $\frac{3}{2}x^{-\frac{1}{3}}$	
$18 \ln 2 - \frac{27}{4}$ cao	A1	their $\frac{5}{2}x^3$	NB A0 for $6 \ln 8 - \frac{27}{4}$